Search Results - (Author, Cooperation:J. Mudge)
-
1N. D. Young ; F. Debelle ; G. E. Oldroyd ; R. Geurts ; S. B. Cannon ; M. K. Udvardi ; V. A. Benedito ; K. F. Mayer ; J. Gouzy ; H. Schoof ; Y. Van de Peer ; S. Proost ; D. R. Cook ; B. C. Meyers ; M. Spannagl ; F. Cheung ; S. De Mita ; V. Krishnakumar ; H. Gundlach ; S. Zhou ; J. Mudge ; A. K. Bharti ; J. D. Murray ; M. A. Naoumkina ; B. Rosen ; K. A. Silverstein ; H. Tang ; S. Rombauts ; P. X. Zhao ; P. Zhou ; V. Barbe ; P. Bardou ; M. Bechner ; A. Bellec ; A. Berger ; H. Berges ; S. Bidwell ; T. Bisseling ; N. Choisne ; A. Couloux ; R. Denny ; S. Deshpande ; X. Dai ; J. J. Doyle ; A. M. Dudez ; A. D. Farmer ; S. Fouteau ; C. Franken ; C. Gibelin ; J. Gish ; S. Goldstein ; A. J. Gonzalez ; P. J. Green ; A. Hallab ; M. Hartog ; A. Hua ; S. J. Humphray ; D. H. Jeong ; Y. Jing ; A. Jocker ; S. M. Kenton ; D. J. Kim ; K. Klee ; H. Lai ; C. Lang ; S. Lin ; S. L. Macmil ; G. Magdelenat ; L. Matthews ; J. McCorrison ; E. L. Monaghan ; J. H. Mun ; F. Z. Najar ; C. Nicholson ; C. Noirot ; M. O'Bleness ; C. R. Paule ; J. Poulain ; F. Prion ; B. Qin ; C. Qu ; E. F. Retzel ; C. Riddle ; E. Sallet ; S. Samain ; N. Samson ; I. Sanders ; O. Saurat ; C. Scarpelli ; T. Schiex ; B. Segurens ; A. J. Severin ; D. J. Sherrier ; R. Shi ; S. Sims ; S. R. Singer ; S. Sinharoy ; L. Sterck ; A. Viollet ; B. B. Wang ; K. Wang ; M. Wang ; X. Wang ; J. Warfsmann ; J. Weissenbach ; D. D. White ; J. D. White ; G. B. Wiley ; P. Wincker ; Y. Xing ; L. Yang ; Z. Yao ; F. Ying ; J. Zhai ; L. Zhou ; A. Zuber ; J. Denarie ; R. A. Dixon ; G. D. May ; D. C. Schwartz ; J. Rogers ; F. Quetier ; C. D. Town ; B. A. Roe
Nature Publishing Group (NPG)
Published 2011Staff ViewPublication Date: 2011-11-18Publisher: Nature Publishing Group (NPG)Print ISSN: 0028-0836Electronic ISSN: 1476-4687Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsKeywords: *Biological Evolution ; *Genome, Plant ; Medicago truncatula/*genetics/*microbiology ; Molecular Sequence Data ; Nitrogen Fixation/genetics ; Rhizobium/*physiology ; Soybeans/genetics ; *Symbiosis ; Synteny ; Vitis/geneticsPublished by: -
2Cregan, P. B. ; Mudge, J. ; Fickus, E. W. ; Marek, L. F. ; Danesh, D. ; Denny, R. ; Shoemaker, R. C. ; Matthews, B. F. ; Jarvik, T. ; Young, N. D.
Springer
Published 1999Staff ViewISSN: 1432-2242Keywords: Key words Bacterial artificial chromosome ; Simple sequence repeats ; Microsatellites ; Soybean cyst nematode ; Genetic mappingSource: Springer Online Journal Archives 1860-2000Topics: BiologyNotes: Abstract Simple sequence repeats (SSRs) are versatile DNA markers that are readily assayed and highly informative. Unfortunately, non-targeted approaches to SSR development often leave large genomic regions without SSR markers. In some cases these same genomic regions are already populated by other types of DNA markers, especially restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNAs (RAPDs), and amplified fragment length polymorphisms (AFLPs). To identify SSR markers in such regions, bacterial artificial chromosome (BAC) clones can be used as intermediaries. First, one or more BAC clones in a region of interest are identified through the use of an existing DNA marker. BAC clones uncovered in this initial step are then used to create a small insert DNA library that can be screened for the presence of SSR-containing clones. Because BAC inserts are often 100-kb pairs or more in size, most contain one or more SSRs. This strategy was applied to two regions of the soybean genome near genes that condition resistance to the soybean cyst nematode on molecular linkage groups G and A2. This targeted approach to identifying new DNA markers can readily be extended to other types of DNA markers, including single nucleotide polymorphisms.Type of Medium: Electronic ResourceURL: -
3Danesh, D. ; Peñuela, S. ; Mudge, J. ; Denny, R. L. ; Nordstrom, H. ; Martinez, J. P. ; Young, N. D.
Springer
Published 1998Staff ViewISSN: 1432-2242Keywords: Key words Chromosome walking ; Gene mapping ; Glycine max ; Heterodera glycines ; High-molecular-weight DNA ; Positional cloningSource: Springer Online Journal Archives 1860-2000Topics: BiologyNotes: Abstract We constructed a bacterial artificial chromosome (BAC) library for soybean (Glycine max) consisting of approximately 30 000 clones with an average insert size of 120 kilobase pairs. The library was successfully screened with restriction fragment length polymorphism (RFLP) and microsatellite markers tightly linked to a major resistance gene for the cyst nematode, Heterodera glycines. Since many soybean RFLPs hybridize to duplicate loci, BACs homologous to duplicate RFLP loci were distinguished by digestion with the restriction enzyme originally used to map the RFLP, followed by a comparison of the hybridizing fragments. Linkage mapping of BAC clones identified with markers linked to the cyst nematode resistance gene demonstrated that these clones were located at the expected chromosomal positions and that there were no indications of chimeras within the genomic inserts.Type of Medium: Electronic ResourceURL: -
4Cregan, P. B. ; Mudge, J. ; Fickus, E. W. ; Danesh, D. ; Denny, R. ; Young, N. D.
Springer
Published 1999Staff ViewISSN: 1432-2242Keywords: Key words Simple sequence repeats ; Microsatellites ; Soybean cyst nematode ; Genetic mapping ; Marker-assisted selectionSource: Springer Online Journal Archives 1860-2000Topics: BiologyNotes: Abstract The soybean cyst nematode (SCN) (Heterodera glycines Inchinoe) is the most economically significant soybean pest. The principal strategy to reduce or eliminate damage from this pest is the use of resistant cultivars. Identifying resistant segregants in a breeding program is a difficult and expensive process which is complicated by the oligogenic nature of the resistance and genetic variability in the pathogen. Fortunately, resistance at one SCN-resistance locus, rhg1, is generally accepted as a necessity for the development of resistant genotypes using any source of resistance and when challenged by any SCN race. Thus, the development of SCN resistant cultivars would be expedited if an effective and rapid system were available to identify breeding lines carrying a resistance allele at the rhg1 locus. In this study we report two simple sequence repeat (SSR) or microsatellite loci that cosegregate and map 0.4 cM from rhg1. Allelic variation at the first of these loci, BARC-Satt309, distinguished most, if not all, SCN-susceptible genotypes from those carrying resistance at rhg1 derived from the important SCN-resistance sources ’Peking’, PI 437654, and PI 90763. BARC-Satt309 was also effective in distinguishing SCN resistance sources PI 88788 and PI 209332 from many, but not all, susceptible genotypes. BARC-Satt309 cannot be used in marker-assisted selection in populations developed from typical southern US cultivars crossed with the important resistance sources PI 88788 or PI 209332 because these genotypes all carry the identical allele at the BARC-Satt309 locus. A second SSR locus, BARC-Sat_168, was developed from a bacterial artificial chromosome (BAC) clone that was identified using the primers to BARC-Satt309. BARC-Sat_168 distinguished PI 88788 and PI 209332 from southern US cultivars such as ’Lee’, ’Bragg’ and ’Essex’. Both BARC-Satt309 and BARC-Sat_168 were used to assay lines from SCN-susceptible×SCN-resistant crosses and proved to be highly effective in identifying lines carrying rhg1 resistance from those carrying the allele for SCN susceptibility at the rhg1 locus.Type of Medium: Electronic ResourceURL: -
5A Plant DNA Isolation Protocol Suitable for Polymerase Chain Reaction Based Marker-Assisted BreedingLange, D.A. ; Peñuela, S. ; Denny, R.L. ; Mudge, J. ; Concibido, V.C. ; Orf, J.H. ; Young, N.D.
Springer
Published 1998Staff ViewISSN: 1435-0653Source: Springer Online Journal Archives 1860-2000Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, NutritionType of Medium: Electronic ResourceURL: