Search Results - (Author, Cooperation:J. H. Postlethwait)
-
1C. T. Amemiya ; J. Alfoldi ; A. P. Lee ; S. Fan ; H. Philippe ; I. Maccallum ; I. Braasch ; T. Manousaki ; I. Schneider ; N. Rohner ; C. Organ ; D. Chalopin ; J. J. Smith ; M. Robinson ; R. A. Dorrington ; M. Gerdol ; B. Aken ; M. A. Biscotti ; M. Barucca ; D. Baurain ; A. M. Berlin ; G. L. Blatch ; F. Buonocore ; T. Burmester ; M. S. Campbell ; A. Canapa ; J. P. Cannon ; A. Christoffels ; G. De Moro ; A. L. Edkins ; L. Fan ; A. M. Fausto ; N. Feiner ; M. Forconi ; J. Gamieldien ; S. Gnerre ; A. Gnirke ; J. V. Goldstone ; W. Haerty ; M. E. Hahn ; U. Hesse ; S. Hoffmann ; J. Johnson ; S. I. Karchner ; S. Kuraku ; M. Lara ; J. Z. Levin ; G. W. Litman ; E. Mauceli ; T. Miyake ; M. G. Mueller ; D. R. Nelson ; A. Nitsche ; E. Olmo ; T. Ota ; A. Pallavicini ; S. Panji ; B. Picone ; C. P. Ponting ; S. J. Prohaska ; D. Przybylski ; N. R. Saha ; V. Ravi ; F. J. Ribeiro ; T. Sauka-Spengler ; G. Scapigliati ; S. M. Searle ; T. Sharpe ; O. Simakov ; P. F. Stadler ; J. J. Stegeman ; K. Sumiyama ; D. Tabbaa ; H. Tafer ; J. Turner-Maier ; P. van Heusden ; S. White ; L. Williams ; M. Yandell ; H. Brinkmann ; J. N. Volff ; C. J. Tabin ; N. Shubin ; M. Schartl ; D. B. Jaffe ; J. H. Postlethwait ; B. Venkatesh ; F. Di Palma ; E. S. Lander ; A. Meyer ; K. Lindblad-Toh
Nature Publishing Group (NPG)
Published 2013Staff ViewPublication Date: 2013-04-20Publisher: Nature Publishing Group (NPG)Print ISSN: 0028-0836Electronic ISSN: 1476-4687Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsKeywords: Animals ; Animals, Genetically Modified ; *Biological Evolution ; Chick Embryo ; Conserved Sequence/genetics ; Enhancer Elements, Genetic/genetics ; Evolution, Molecular ; Extremities/anatomy & histology/growth & development ; Fishes/anatomy & histology/*classification/*genetics/physiology ; Genes, Homeobox/genetics ; Genome/*genetics ; Genomics ; Immunoglobulin M/genetics ; Mice ; Molecular Sequence Annotation ; Molecular Sequence Data ; Phylogeny ; Sequence Alignment ; Sequence Analysis, DNA ; Vertebrates/anatomy & histology/genetics/physiologyPublished by: -
2K. Howe ; M. D. Clark ; C. F. Torroja ; J. Torrance ; C. Berthelot ; M. Muffato ; J. E. Collins ; S. Humphray ; K. McLaren ; L. Matthews ; S. McLaren ; I. Sealy ; M. Caccamo ; C. Churcher ; C. Scott ; J. C. Barrett ; R. Koch ; G. J. Rauch ; S. White ; W. Chow ; B. Kilian ; L. T. Quintais ; J. A. Guerra-Assuncao ; Y. Zhou ; Y. Gu ; J. Yen ; J. H. Vogel ; T. Eyre ; S. Redmond ; R. Banerjee ; J. Chi ; B. Fu ; E. Langley ; S. F. Maguire ; G. K. Laird ; D. Lloyd ; E. Kenyon ; S. Donaldson ; H. Sehra ; J. Almeida-King ; J. Loveland ; S. Trevanion ; M. Jones ; M. Quail ; D. Willey ; A. Hunt ; J. Burton ; S. Sims ; K. McLay ; B. Plumb ; J. Davis ; C. Clee ; K. Oliver ; R. Clark ; C. Riddle ; D. Elliot ; G. Threadgold ; G. Harden ; D. Ware ; S. Begum ; B. Mortimore ; G. Kerry ; P. Heath ; B. Phillimore ; A. Tracey ; N. Corby ; M. Dunn ; C. Johnson ; J. Wood ; S. Clark ; S. Pelan ; G. Griffiths ; M. Smith ; R. Glithero ; P. Howden ; N. Barker ; C. Lloyd ; C. Stevens ; J. Harley ; K. Holt ; G. Panagiotidis ; J. Lovell ; H. Beasley ; C. Henderson ; D. Gordon ; K. Auger ; D. Wright ; J. Collins ; C. Raisen ; L. Dyer ; K. Leung ; L. Robertson ; K. Ambridge ; D. Leongamornlert ; S. McGuire ; R. Gilderthorp ; C. Griffiths ; D. Manthravadi ; S. Nichol ; G. Barker ; S. Whitehead ; M. Kay ; J. Brown ; C. Murnane ; E. Gray ; M. Humphries ; N. Sycamore ; D. Barker ; D. Saunders ; J. Wallis ; A. Babbage ; S. Hammond ; M. Mashreghi-Mohammadi ; L. Barr ; S. Martin ; P. Wray ; A. Ellington ; N. Matthews ; M. Ellwood ; R. Woodmansey ; G. Clark ; J. Cooper ; A. Tromans ; D. Grafham ; C. Skuce ; R. Pandian ; R. Andrews ; E. Harrison ; A. Kimberley ; J. Garnett ; N. Fosker ; R. Hall ; P. Garner ; D. Kelly ; C. Bird ; S. Palmer ; I. Gehring ; A. Berger ; C. M. Dooley ; Z. Ersan-Urun ; C. Eser ; H. Geiger ; M. Geisler ; L. Karotki ; A. Kirn ; J. Konantz ; M. Konantz ; M. Oberlander ; S. Rudolph-Geiger ; M. Teucke ; C. Lanz ; G. Raddatz ; K. Osoegawa ; B. Zhu ; A. Rapp ; S. Widaa ; C. Langford ; F. Yang ; S. C. Schuster ; N. P. Carter ; J. Harrow ; Z. Ning ; J. Herrero ; S. M. Searle ; A. Enright ; R. Geisler ; R. H. Plasterk ; C. Lee ; M. Westerfield ; P. J. de Jong ; L. I. Zon ; J. H. Postlethwait ; C. Nusslein-Volhard ; T. J. Hubbard ; H. Roest Crollius ; J. Rogers ; D. L. Stemple
Nature Publishing Group (NPG)
Published 2013Staff ViewPublication Date: 2013-04-19Publisher: Nature Publishing Group (NPG)Print ISSN: 0028-0836Electronic ISSN: 1476-4687Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsKeywords: Animals ; Chromosomes/genetics ; Conserved Sequence/*genetics ; Evolution, Molecular ; Female ; Genes/genetics ; Genome/*genetics ; Genome, Human/genetics ; Genomics ; Humans ; Male ; Meiosis/genetics ; Molecular Sequence Annotation ; Pseudogenes/genetics ; Reference Standards ; Sex Determination Processes/genetics ; Zebrafish/*genetics ; Zebrafish Proteins/geneticsPublished by: -
3Staff View
ISSN: 1476-4687Source: Nature Archives 1869 - 2009Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsNotes: [Auszug] In an initial experiment, animals were ligated soon after eclosion, aged for 24 h to allow endogenous levels of hormone to decay and then treated in groups of 16 with increasing amounts of 20-HE in the presence or absence of JHA. After 6 h the haemolymph proteins were labelled by injecting ...Type of Medium: Electronic ResourceURL: -
4Bingulac-Popovic, Jasna ; Figueroa, F. ; Sato, Akie ; Talbot, William S. ; Johnson, Stephen L. ; Gates, Michael ; Postlethwait, J. H. ; Klein, Jan
Springer
Published 1997Staff ViewISSN: 1432-1211Source: Springer Online Journal Archives 1860-2000Topics: BiologyMedicineNotes: Abstract The mammalian major histocompatibility complex (Mhc) consists of three closely linked regions, I, II, and III, occupying a single chromosomal segment. The class I loci in region I and the class II loci in region II are related in their structure, function, and evolution. Region III, which is intercalated between regions I and II, contains loci unrelated to the class I and II loci, and to one another. There are indications that a similar Mhc organization exists in birds and amphibians. Here, we demonstrate that in the zebrafish (Danio rerio), a representative of the teleost fishes, the class II loci are divided between two linkage groups which are distinct from the linkage group containing the class I loci. The β2-microglobulin-encoding gene is loosely linked to one of the class II loci. The gene coding for complement factor B, which is one of the region III genes in mammals, is linked neither to the class I nor to the class II loci in the zebrafish. These results, combined with preliminary data suggesting that the class I and class II regions in another order of teleost fish are also in different linkage groups, indicate that close linkage of the two regions is not necessary either for regulation of expression or for co-evolution of the class I and class II loci. They also raise the question of whether linkage of the class I and class II loci in tetrapods is a primitive or derived character.Type of Medium: Electronic ResourceURL: -
5Staff View
ISSN: 1617-4623Source: Springer Online Journal Archives 1860-2000Topics: BiologyNotes: Summary To assess the likelihood of finding genetic variants for the three major yolk polypeptides (YPs) within the species Drosophila melanogaster, YPs from the five species most closely related to D. melanogaster were investigated. The relative positions of the three YPs were characteristic for each species, and in all cases the mobilities of the YP in the ovary corresponded to that of the YP in the hemolymph of the same species. Different stocks of Drosophila simulans were found to have either of two forms of yolk polypeptide-2 (YP2). The YP2S polypeptide migrated more slowly than YP2F by an apparent molecular weight difference of about 700 daltons. The genetic factor responsible for this difference mapped to locus 35 on the X chromosome. The Yp2 allele present specified the mobility of the YP2 polypeptide in both the hemolymph and the ovary. YP1 and YP3 were the same in both Yp2 S and Yp2 F stocks indicating that they are not affected by the Yp2 gene. Densitometric scans of gels showed that there was more than twice as much YP2F as YP2S in the ovaries and hemolymph of homozygous animals. Yp2 S/Yp2 F heterozygotes contained both fast and slowly migrating YP2. The amount of each YP2 in Yp2 F/Yp2 S heterozygotes was about half that found in each homozygote. These dosage results suggest that this locus is the structural gene. Peptide mapping showed that the structural element contributing to retarded mobility of YP2S is unlikely to reside at either end of the molecule. These experiments suggest a cytogenetic location in which to concentrate further investigations on the genetic regulation of YP2 synthesis.Type of Medium: Electronic ResourceURL: -
6Staff View
ISSN: 0362-2525Keywords: Life and Medical Sciences ; Cell & Developmental BiologySource: Wiley InterScience Backfile Collection 1832-2000Topics: BiologyMedicineNotes: An ovarian follicle of Drosophila consists of an oocyte, 15 nurse cells, and hundreds of follicular epithelial cells. A freeze-fracture analysis of the surfaces between glutaraldehyde-fixed ovarian cells showed that all three cell types were interconnected by gap junctions. This is the first report of gap junctions between adjacent nurse cells, between nurse cells and oocytes, and between follicle cells and oocytes in Drosophila. Since we did not observe intramembranous particle clumping into crystalline patterns and since structurally different gap junctions occurred at different times in development and at different cell-cell interfaces, it is unlikely that fixation artifacts influenced particle distribution in our experiments. A computer-assisted morphometric analysis showed that the extent, size, and morphology of gap junctions varied with development and that these junctions can cover up to 9% of the cell surfaces. To test the role of gap junctions in follicular maturation, we studied ovaries from flies homozygous for the female sterile mutation fs(2)A17, in which follicles develop normally until yolk deposition commences. During the development of mutant follicles, gap junctions became abnormal before any other morphological aspect of the follicle. These studies show that gap junctions are available to play an important role in coordinating intercellular activities between all three cell types in ovarian follicles of Drosophila.Additional Material: 25 Ill.Type of Medium: Electronic ResourceURL: