Search Results - (Author, Cooperation:J. F. Whitacre)

Showing 1 - 3 results of 3, query time: 0.12s Refine Results
  1. 1
    J. Apt ; S. B. Peterson ; J. F. Whitacre
    American Association for the Advancement of Science (AAAS)
    Published 2011
    Staff View
    Publication Date:
    2011-08-13
    Publisher:
    American Association for the Advancement of Science (AAAS)
    Print ISSN:
    0036-8075
    Electronic ISSN:
    1095-9203
    Topics:
    Biology
    Chemistry and Pharmacology
    Computer Science
    Medicine
    Natural Sciences in General
    Physics
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  2. 2
  3. 3
    Whitacre, J. F.

    [S.l.] : American Institute of Physics (AIP)
    Published 1998
    Staff View
    ISSN:
    1089-7550
    Source:
    AIP Digital Archive
    Topics:
    Physics
    Notes:
    Real surfaces are not flat on an atomic scale. Studying the effects of roughness on microstructural evolution is of relevance because films are sputtered onto nonideal surfaces in many applications. To this end, amorphous rough substrates of two different morphologies, either elongated mounds or facets, were fabricated. The microstructural development of films deposited onto these surfaces was examined. In particular, the development of a preferred crystallographic orientation in the plane of growth in 400 nm thick Mo films grown on the rough substrates was studied using scanning electron microscopy, transmission electron diffraction, and high resolution x-ray diffraction (using φ scans in the symmetric grazing incidence x-ray scattering geometry with a synchrotron light source). It was found that the degree of texturing was dependent upon the type of roughness and its orientation during deposition. By limiting the average oblique angle of incident adatom flux, rough surfaces slowed the development of in-plane texture. Comparison between experimental data and theoretical predictions showed that a recent analytical model is able to reasonably predict the degree of texturing in films grown onto these surfaces. © 1998 American Institute of Physics.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses