Search Results - (Author, Cooperation:J. C. McEwan)

Showing 1 - 5 results of 5, query time: 0.15s Refine Results
  1. 1
    Y. Jiang ; M. Xie ; W. Chen ; R. Talbot ; J. F. Maddox ; T. Faraut ; C. Wu ; D. M. Muzny ; Y. Li ; W. Zhang ; J. A. Stanton ; R. Brauning ; W. C. Barris ; T. Hourlier ; B. L. Aken ; S. M. Searle ; D. L. Adelson ; C. Bian ; G. R. Cam ; Y. Chen ; S. Cheng ; U. DeSilva ; K. Dixen ; Y. Dong ; G. Fan ; I. R. Franklin ; S. Fu ; P. Fuentes-Utrilla ; R. Guan ; M. A. Highland ; M. E. Holder ; G. Huang ; A. B. Ingham ; S. N. Jhangiani ; D. Kalra ; C. L. Kovar ; S. L. Lee ; W. Liu ; X. Liu ; C. Lu ; T. Lv ; T. Mathew ; S. McWilliam ; M. Menzies ; S. Pan ; D. Robelin ; B. Servin ; D. Townley ; W. Wang ; B. Wei ; S. N. White ; X. Yang ; C. Ye ; Y. Yue ; P. Zeng ; Q. Zhou ; J. B. Hansen ; K. Kristiansen ; R. A. Gibbs ; P. Flicek ; C. C. Warkup ; H. E. Jones ; V. H. Oddy ; F. W. Nicholas ; J. C. McEwan ; J. W. Kijas ; J. Wang ; K. C. Worley ; A. L. Archibald ; N. Cockett ; X. Xu ; B. P. Dalrymple
    American Association for the Advancement of Science (AAAS)
    Published 2014
    Staff View
    Publication Date:
    2014-06-07
    Publisher:
    American Association for the Advancement of Science (AAAS)
    Print ISSN:
    0036-8075
    Electronic ISSN:
    1095-9203
    Topics:
    Biology
    Chemistry and Pharmacology
    Computer Science
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    Amino Acid Sequence ; Animals ; Fatty Acids, Volatile/metabolism/physiology ; Gene Expression Regulation ; Genome ; Keratins, Hair-Specific/genetics ; Lipid Metabolism/genetics/*physiology ; Molecular Sequence Data ; Phylogeny ; Rumen/metabolism/*physiology ; Sheep, Domestic/classification/*genetics/*metabolism ; Transcriptome ; Wool/growth & development
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  2. 2
    Staff View
    Publication Date:
    2018-05-30
    Publisher:
    Genetics Society of America (GSA)
    Print ISSN:
    0016-6731
    Topics:
    Biology
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  3. 3
    Dodds, K. G. ; Tate, M. L. ; McEwan, J. C. ; Crawford, A. M.
    Springer
    Published 1996
    Staff View
    ISSN:
    1432-2242
    Keywords:
    Key words Parentage tests ; Exclusion probabilities ; Genetic markers
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Biology
    Notes:
    Abstract  Pedigree testing, using genetic markers, may be undertaken for a variety of situations, of which the classical paternity testing is only one. This has not always been made clear in the literature. Exclusion probabilities associated with various testing situations, including the use of autosomal or X-linked codominant marker systems with any number of alleles, are presented. These formulae can be used to determine the appropriate exclusion probability for the situation being investigated. One such situation is where sire groups of progeny are to be verified without knowledge of the dams’ genotypes, in which case the classical paternity exclusion probability is too high, and if used may result in an optimistic declaration about the progeny that have not been excluded. On the other hand, if mating pairs are known then incorrect progeny can be excluded at a higher rate than suggested by paternity exclusion calculations. The formulae also assist in determining the usefulness of X-linked markers, particularly if the pedigree checks involve progeny of only one sex. A system of notation that is useful for the algebraic manipulation of genetic probabilities, including exclusion probabilities as presented here, is also given.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  4. 4
    Dodds, K. G. ; Tate, M. L. ; McEwan, J. C. ; Crawford, A. M.
    Springer
    Published 1996
    Staff View
    ISSN:
    1432-2242
    Keywords:
    Parentage tests ; Exclusion probabilities ; Genetic markers
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Biology
    Notes:
    Abstract Pedigree testing, using genetic markers, may be undertaken for a variety of situations, of which the classical paternity testing is only one. This has not always been made clear in the literature. Exclusion probabilities associated with various testing situations, including the use of autosomal or X-linked codominant marker systems with any number of alleles, are presented. These formulae can be used to determine the appropriate exclusion probability for the situation being investigated. One such situation is where sire groups of progeny are to be verified without knowledge of the dams' genotypes, in which case the classical paternity exclusion probability is too high, and if used may result in an optimistic declaration about the progeny that have not been excluded. On the other hand, if mating pairs are known then incorrect progeny can be excluded at a higher rate than suggested by paternity exclusion calculations. The formulae also assist in determining the usefulness of X-linked markers, particularly if the pedigree checks involve progeny of only one sex. A system of notation that is useful for the algebraic manipulation of genetic probabilities, including exclusion probabilities as presented here, is also given.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  5. 5
    Wilson, S. J. ; McEwan, J. C. ; Sheard, P. W. ; Harris, A. J.
    Springer
    Published 1992
    Staff View
    ISSN:
    1573-2657
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Biology
    Medicine
    Notes:
    Summary The generation of myotubes was studied in the tibialis cranialis muscle in the sheep hindlimb from the earliest stage of primary myotube formation until a stage shortly before muscle fascicles began to segregate. Primary myotubes were first seen on embryonic day 32 (E32) and reached their maximum number by E38. Small numbers of secondary myotubes were first identified at E38, and secondary myotube numbers continued to increase during the period of study. The ratio of adult muscle fibre to primary myotube numbers was approximately 70∶1, making it seem unlikely that every later generation myotube used a primary myotube as scaffold for its formation, as described in small mammals. By E62, some secondary myotubes were supporting the formation of a third generation of myotubes. Experiments with diffusible dye markers showed that primary myotubes extended from tendon to tendon of the muscle, whereas most adult fibres ran for only part of the muscle length, terminating with myo-myonal attachments to other muscle fibres in a series arrangement. Acetylcholinesterase (AChE) and acetylcholine receptor (AChR) aggregations appeared in multiple bands across the muscle shortly after formation of the primary generation of myotubes was complete. The number of bands and their pattern of distribution across the muscle as they were first formed was the same as in the adult. Primary myotubes teased from early muscles had multiple focal AChE and AChR deposits regularly spaced along their lengths. We suggest that the secondary generation of myotubes forms at endplate sites in a series arrangement along the length of single primary myotubes, and that tertiary and possibly later generations of myotubes in their turn use the earlier generation myofibres as a scaffold. Although the fundamental cellular mechanisms appear to be similar, the process of muscle fibre generation in large mammalian muscles is more complex than that described from previous studies in small laboratory rodents.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses