Search Results - (Author, Cooperation:H. A. Lewin)
-
1M. A. Groenen ; A. L. Archibald ; H. Uenishi ; C. K. Tuggle ; Y. Takeuchi ; M. F. Rothschild ; C. Rogel-Gaillard ; C. Park ; D. Milan ; H. J. Megens ; S. Li ; D. M. Larkin ; H. Kim ; L. A. Frantz ; M. Caccamo ; H. Ahn ; B. L. Aken ; A. Anselmo ; C. Anthon ; L. Auvil ; B. Badaoui ; C. W. Beattie ; C. Bendixen ; D. Berman ; F. Blecha ; J. Blomberg ; L. Bolund ; M. Bosse ; S. Botti ; Z. Bujie ; M. Bystrom ; B. Capitanu ; D. Carvalho-Silva ; P. Chardon ; C. Chen ; R. Cheng ; S. H. Choi ; W. Chow ; R. C. Clark ; C. Clee ; R. P. Crooijmans ; H. D. Dawson ; P. Dehais ; F. De Sapio ; B. Dibbits ; N. Drou ; Z. Q. Du ; K. Eversole ; J. Fadista ; S. Fairley ; T. Faraut ; G. J. Faulkner ; K. E. Fowler ; M. Fredholm ; E. Fritz ; J. G. Gilbert ; E. Giuffra ; J. Gorodkin ; D. K. Griffin ; J. L. Harrow ; A. Hayward ; K. Howe ; Z. L. Hu ; S. J. Humphray ; T. Hunt ; H. Hornshoj ; J. T. Jeon ; P. Jern ; M. Jones ; J. Jurka ; H. Kanamori ; R. Kapetanovic ; J. Kim ; J. H. Kim ; K. W. Kim ; T. H. Kim ; G. Larson ; K. Lee ; K. T. Lee ; R. Leggett ; H. A. Lewin ; Y. Li ; W. Liu ; J. E. Loveland ; Y. Lu ; J. K. Lunney ; J. Ma ; O. Madsen ; K. Mann ; L. Matthews ; S. McLaren ; T. Morozumi ; M. P. Murtaugh ; J. Narayan ; D. T. Nguyen ; P. Ni ; S. J. Oh ; S. Onteru ; F. Panitz ; E. W. Park ; H. S. Park ; G. Pascal ; Y. Paudel ; M. Perez-Enciso ; R. Ramirez-Gonzalez ; J. M. Reecy ; S. Rodriguez-Zas ; G. A. Rohrer ; L. Rund ; Y. Sang ; K. Schachtschneider ; J. G. Schraiber ; J. Schwartz ; L. Scobie ; C. Scott ; S. Searle ; B. Servin ; B. R. Southey ; G. Sperber ; P. Stadler ; J. V. Sweedler ; H. Tafer ; B. Thomsen ; R. Wali ; J. Wang ; S. White ; X. Xu ; M. Yerle ; G. Zhang ; J. Zhang ; S. Zhao ; J. Rogers ; C. Churcher ; L. B. Schook
Nature Publishing Group (NPG)
Published 2012Staff ViewPublication Date: 2012-11-16Publisher: Nature Publishing Group (NPG)Print ISSN: 0028-0836Electronic ISSN: 1476-4687Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsKeywords: Animals ; Demography ; Genome/*genetics ; Models, Animal ; Molecular Sequence Data ; *Phylogeny ; Population Dynamics ; Sus scrofa/*classification/*geneticsPublished by: -
2Davies, C. J. ; Joosten, I. ; Andersson, L. ; Arriens, M. A. ; Bernoco, D. ; Bissumbhar, B. ; Byrns, G. ; Eijk, M. J. T. ; Kristensen, B. ; Lewin, H. A. ; Mikko, S. ; Morgan, A. L. G. ; Muggli-Cockett, N. E. ; Nilsson, Ph. R. ; Oliver, R. A. ; Park, C. A. ; Van Der Poel, J. J. ; Polli, M. ; Spooner, R. L. ; Stewart, J. A.
Oxford, UK : Blackwell Publishing Ltd
Published 1994Staff ViewISSN: 1744-313XSource: Blackwell Publishing Journal Backfiles 1879-2005Topics: BiologyMedicineNotes: Polymorphism of the bovine DRB, DQA, DQB, DYA, DOB and DIB genes was investigated using restriction fragment length polymorphism (RFLP) analysis, isoelectric focusing (IEF), class II serology and polymerase chain reaction (PCR) based typing techniques. The simultaneous application of multiple typing techniques and the characterization of multiple genes resulted in a greatly enhanced picture of the bovine class II regions. Thirty-eight class IIa (DR-DQ) and 5 class lib (DYA-DOB-DIB) haplotypes were defined. It was found that IEF types were associated with DRB3 polymorphism defined by DRB3 PCR-RFLP and DRB3 microsatellite PCR. Serologically defined polymorphism was associated with distinct molecular/IEF motifs and, therefore, DR and DQ specificities could be tentatively distinguished. Although the DR and DQ genes are tightly linked, neither DR nor DQ typing defined all of the class IIa region polymorphism. Furthermore, even the most powerful DRB3 typing technique, DRB3 PCR-RFLP, failed to detect all expressed DRB3 polymorphism. All detected DRB3 polymorphism could, however, be distinguished with a combination of two molecular techniques: DRB3 PCR-RFLP and DRB3 microsatellite PCR. RFLP typing with transmembrane probes detected significantly less polymorphism than typing with cDNA or exon probes. However, the transmembrane probes were useful because they were locus specific. The presence of only 5 of 12 possible class lib haplotypes was unexpected and indicates that the DYA, DOB and DIB genes are tightly linked.Type of Medium: Electronic ResourceURL: -
3Watkins, D. I. ; Shadduck, J. A. ; Stone, M. E. ; Lewin, H. A. ; Letvin, N. L.
Oxford, UK : Blackwell Publishing Ltd
Published 1989Staff ViewISSN: 1744-313XSource: Blackwell Publishing Journal Backfiles 1879-2005Topics: BiologyMedicineNotes: The products of the major histocompatibility complex (MHC) loci regulate an individual's immune response to pathogens. Cattle provide an important model to study the relationship between disease susceptibility and MHC haplotype since large half-sibling families are common. The definitive demonstration, however, of a firm relationship between MHC phenotype and disease susceptibility in cattle will require a precise definition of the bovine MHC allelic products. Available reagents for serological characterization of the bovine MHC gene products have not been adequate for these purposes. We have shown that existing mouse monoclonal antibodies and rabbit anti-human antisera precipitate bovine class I molecules, that these structures separate well by one-dimensional isoelectric focusing (1-DIEF), and that immunoprecipitation followed by 1-DIEF allows the detection of bovine class I MHC allelic products. Through this technique, we have identified previously undetected class I products. This approach will facilitate a detailed characterization of the bovine MHC class I gene products.Type of Medium: Electronic ResourceURL: -
4Davies, C. J. ; Joosten, I. ; Bernoco, D. ; Arriens, M. A. ; Bester, J. ; Ceriotti, G. ; Ellis, S. ; Hensen, E. J. ; Hines, H. C. ; Horin, P. ; Kristensen, B. ; Lewin, H. A. ; Meggiolaro, D. ; Morgan, A. L. G. ; Morita, M. ; Nilsson, Ph.R. ; Oliver, R. A. ; Orlova, A. ; ØStergarrd, H. ; Park, C. A. ; Schuberth, H.-J. ; Simon, M. ; Spooner, R. L. ; Stewart, J. A.
Oxford, UK : Blackwell Publishing Ltd
Published 1994Staff ViewISSN: 1744-313XSource: Blackwell Publishing Journal Backfiles 1879-2005Topics: BiologyMedicineNotes: The objectives of the Fifth International BoLA Workshop were to: standardize nomenclature, compare typing methods, and characterize BoLA haplotypes. The workshop was based on the distribution of blood samples (cells) from 60 selected cattle to 14 laboratories. Results for the class I (BoLA-A) region are presented in this paper while results for the class II regions are presented in a separate report. Thirty-six of the 50 previously established serological class I specificities were represented in the cell panel. However, only 30 specificities could be confirmed. Two specificities, A16 and A32, were upgraded from provisional, workshop (w) specificities to BoLA-A locus specificities and three new specificities, w51(w28), w52 and w53(w28), were defined. The 39 specificities distinguished 30 class I haplotypes in the 60 animals. Class I isoelectric focusing proved to be a useful adjunct to the serology. Isoelectric focusing confirmed several serologically defined splits and detected splits of A15(A8), A18(A6) and A22(w49) that had not been detected by serology. Subsequently, serological support for splits of A15(A8) and A22(w49) was found.Type of Medium: Electronic ResourceURL: -
5Staff View
ISSN: 1432-1777Source: Springer Online Journal Archives 1860-2000Topics: BiologyMedicineNotes: Abstract A male-specific genetic linkage map of nine loci on bovine Chromosome (Chr) 2 (BTA2) was constructed from 306 offspring belonging to six paternal halfsib families. Loci studied were the structural genes for liver/bone/kidney alkaline phosphatase (ALPL), Gardner-Rasheed feline sarcoma (v-fgr) oncogene homolog (FGR), alpha-L-fucosidase 1 (FUCA1), and fibronectin 1 (FN1), and the microsatellite loci ARO28, DU17S2, DU17S3, DU17S4, and DU17S5. Genotyping was performed by restriction fragment length polymorphism (RFLP) for structural genes and polymerase chain reaction (PCR) for the microsatellites. Two genetically independent linkage groups were identified. The order of genes in the first linkage group, L31, is (ARO28-FN1)-FGR-FUCA1-ALPL, covering a map distance of 34.1 cM between terminal markers. The second linkage group, L32, consists of DU17S2-DU17S5-DU17S4-DU17S3 and is 41.3 cM in length. Genetic linkage between FN1 and FGR confirms previous physical assignment of these genes to the same synteny group. Currently, the genetic linkage of FN1 and FGR is unique to cattle and thus localizes a site of chromosomal evolution to a 22-cM interval between the two loci.Type of Medium: Electronic ResourceURL: -
6Eijk, M. J. T. ; Beever, J. E. ; Da, Y. ; Stewart, J. A. ; Nicholaides, G. E. ; Green, C. A. ; Lewin, H. A.
Springer
Published 1995Staff ViewISSN: 1432-1777Source: Springer Online Journal Archives 1860-2000Topics: BiologyMedicineType of Medium: Electronic ResourceURL: