Search Results - (Author, Cooperation:G. Csordas)
-
1G. Gong ; M. Song ; G. Csordas ; D. P. Kelly ; S. J. Matkovich ; G. W. Dorn, 2nd
American Association for the Advancement of Science (AAAS)
Published 2016Staff ViewPublication Date: 2016-01-20Publisher: American Association for the Advancement of Science (AAAS)Print ISSN: 0036-8075Electronic ISSN: 1095-9203Topics: BiologyChemistry and PharmacologyComputer ScienceMedicineNatural Sciences in GeneralPhysicsKeywords: Animals ; Cellular Reprogramming ; GTP Phosphohydrolases/genetics/metabolism ; Heart/*embryology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria, Heart/metabolism/*physiology/ultrastructure ; Mitochondrial Degradation/genetics/*physiology ; Mitochondrial Dynamics ; Myocardium/*metabolism/ultrastructure ; Myocytes, Cardiac/metabolism/ultrastructure ; Protein Kinases/metabolism ; Ubiquitin-Protein Ligases/genetics/*metabolismPublished by: -
2Staff View
ISSN: 0945-3245Keywords: AMS(MOS) ; 30D10, 30D15. 65E05 ; CR: G1.mSource: Springer Online Journal Archives 1860-2000Topics: MathematicsNotes: Summary A lower bound is constructively found for the de Bruijn-Newman constant Λ, which is related to the Riemann Hypothesis. This lower bound is determined by explicitly exhibiting an associated jensen polynomial with nonreal zeros.Type of Medium: Electronic ResourceURL: -
3Staff View
ISSN: 1572-9265Keywords: AMS (MOS): 30D10 ; 30D15 ; 65E05 ; CR:G1.m ; Laguerre inequalities ; Riemann Hypothesis ; de Bruijn-Newman constantSource: Springer Online Journal Archives 1860-2000Topics: Computer ScienceMathematicsNotes: Abstract We investigate here a new numerical method, base on the Laguerre inequalities, for determining lower bounds for the de Bruijn-Newman constant ∧, which is related to the Riemann Hypothesis. (Specifically, the truth of the Riemann Hypothesis would imply that ∧≦0.) Unlike previous methods which involved either finding nonreal zeros of associated Jensen polynomials or finding nonreal zeros of a certain real entire function, this new method depends only on evaluating, in real arithmetic, the Laguerre difference $$L_1 (H_\lambda (x))\begin{array}{*{20}c} {\text{.}} \\ {\text{.}} \\ \end{array} = (H'_\lambda (x))^2 - H_\lambda (x) \cdot H''_{_\lambda } (x){\text{ (}}x,{\text{ }}\lambda \in \mathbb{R}{\text{)}}$$ where $$(H_\lambda (z)\begin{array}{*{20}c} {\text{.}} \\ {\text{.}} \\ \end{array} = \int_0^\infty {e^{\lambda t^2 } \Phi (t)}$$ cos(tz)dt is a real entire function. We apply this method to obtain the new lower bound for ∧, -0.0991 〈 ∧ which improves all previously published lower bounds for ∧.Type of Medium: Electronic ResourceURL: -
4Staff View
ISSN: 1588-2632Source: Springer Online Journal Archives 1860-2000Topics: MathematicsType of Medium: Electronic ResourceURL: