Search Results - (Author, Cooperation:F. Murat)

Showing 1 - 8 results of 8, query time: 0.15s Refine Results
  1. 1
    A. A. Myburg ; D. Grattapaglia ; G. A. Tuskan ; U. Hellsten ; R. D. Hayes ; J. Grimwood ; J. Jenkins ; E. Lindquist ; H. Tice ; D. Bauer ; D. M. Goodstein ; I. Dubchak ; A. Poliakov ; E. Mizrachi ; A. R. Kullan ; S. G. Hussey ; D. Pinard ; K. van der Merwe ; P. Singh ; I. van Jaarsveld ; O. B. Silva-Junior ; R. C. Togawa ; M. R. Pappas ; D. A. Faria ; C. P. Sansaloni ; C. D. Petroli ; X. Yang ; P. Ranjan ; T. J. Tschaplinski ; C. Y. Ye ; T. Li ; L. Sterck ; K. Vanneste ; F. Murat ; M. Soler ; H. S. Clemente ; N. Saidi ; H. Cassan-Wang ; C. Dunand ; C. A. Hefer ; E. Bornberg-Bauer ; A. R. Kersting ; K. Vining ; V. Amarasinghe ; M. Ranik ; S. Naithani ; J. Elser ; A. E. Boyd ; A. Liston ; J. W. Spatafora ; P. Dharmwardhana ; R. Raja ; C. Sullivan ; E. Romanel ; M. Alves-Ferreira ; C. Kulheim ; W. Foley ; V. Carocha ; J. Paiva ; D. Kudrna ; S. H. Brommonschenkel ; G. Pasquali ; M. Byrne ; P. Rigault ; J. Tibbits ; A. Spokevicius ; R. C. Jones ; D. A. Steane ; R. E. Vaillancourt ; B. M. Potts ; F. Joubert ; K. Barry ; G. J. Pappas ; S. H. Strauss ; P. Jaiswal ; J. Grima-Pettenati ; J. Salse ; Y. Van de Peer ; D. S. Rokhsar ; J. Schmutz
    Nature Publishing Group (NPG)
    Published 2014
    Staff View
    Publication Date:
    2014-06-12
    Publisher:
    Nature Publishing Group (NPG)
    Print ISSN:
    0028-0836
    Electronic ISSN:
    1476-4687
    Topics:
    Biology
    Chemistry and Pharmacology
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    Eucalyptus/classification/*genetics ; Evolution, Molecular ; Genetic Variation ; *Genome, Plant ; Inbreeding ; Phylogeny
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  2. 2
    Staff View
    Type of Medium:
    Online
    Publication Date:
    2003
    Keywords:
    Ehe ; Familie ; Bildungsinvestition ; Investition ; Arbeitsplatzangebot ; Ökonomie ; Arbeitspapier ; Theorie
    Language:
    English
    FIS Bildung Literaturdatenbank
  3. 3
    Grossman, Herschel I. ; Iyigun, Murat F.

    Oxford, UK : Blackwell Publishing Ltd
    Published 1995
    Staff View
    ISSN:
    1468-0343
    Source:
    Blackwell Publishing Journal Backfiles 1879-2005
    Topics:
    Political Science
    Notes:
    This paper develops a model for studying colonial investment in which the metropolitan government restricts the amount of investment in the colony in order to maximize the net profits earned in the colony. The model explicitly includes the threat of subversive activity by the indigenous colonial population. The analysis suggests why historically some countries but not others became colonies and why many colonies that were initially profitable subsequently become unprofitable and were abandoned. The model also has implications for the amount of investment in colonies, the allocation of indigenous colonial labor between production and subversive activity, and the distribution of income between colonial firms and the indigenous population.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  4. 4
    Mokrane, A. ; Murat, F.
    Springer
    Published 1998
    Staff View
    ISSN:
    1572-929X
    Keywords:
    Variational inequalities ; penalization ; Lewy–Stampacchia's inequality.
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mathematics
    Notes:
    Abstract In this paper we prove the Lewy–Stampacchia's inequality for elliptic variational inequalities with obstacle involving fairly general Leray–Lions operators. The main novelty of the paper is the method of proof, which uses the natural penalization. One of the steps of the proof consists in proving, again thanks to the natural penalization, that the nonnegative cone of W 0 1,p (Ω) is dense in the nonnegative cone of W-1,p′(Ω).
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  5. 5
    Francfort, G. A. ; Murat, F.
    Springer
    Published 1986
    Staff View
    ISSN:
    1432-0673
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mathematics
    Physics
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  6. 6
    Bensoussan, A. ; Boccardo, L. ; Murat, F.
    Springer
    Published 1992
    Staff View
    ISSN:
    1432-0606
    Keywords:
    Homogenization ; G-convergence ; H-convergence ; Quasi-linear PDE
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mathematics
    Notes:
    Abstract We consider in this paper the limit behavior of the solutionsu ɛ of the problem $$\begin{gathered} - div(a^\varepsilon Du^\varepsilon ) + \gamma u^\varepsilon = H^\varepsilon (x, u^\varepsilon , Du^\varepsilon ), \hfill \\ u^\varepsilon \in H_0^1 (\Omega ) \cap L^\infty (\Omega ), \hfill \\ \end{gathered}$$ whereH ɛ has quadratic growth inDu ɛ anda ɛ (x) is a family of matrices satisfying the general assumptions of abstract homogenization. We also consider the problem $$\begin{gathered} - div(a^\varepsilon Du^\varepsilon ) + G^\varepsilon (x, u^\varepsilon , Du^\varepsilon ) = f \in H^{ - 1} (\Omega ), \hfill \\ u^\varepsilon \in H_0^1 (\Omega ), G^\varepsilon (x, u^\varepsilon , Du^\varepsilon ) \in L^1 (\Omega ), u^\varepsilon G^\varepsilon (x, u^\varepsilon , Du^\varepsilon ) \in L^1 (\Omega ) \hfill \\ \end{gathered}$$ whereG ɛ has quadratic growth inDu ɛ and satisfiesG ɛ (x, s, ξ)s ≥ 0. Note that in this last modelu ɛ is in general unbounded, which gives extra difficulties for the homogenization process. In both cases we pass to the limit and obtain an homogenized equation having the same structure.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  7. 7
    Boccardo, L. ; Murat, F. ; Puel, J. P.
    Springer
    Published 1988
    Staff View
    ISSN:
    1618-1891
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mathematics
    Description / Table of Contents:
    Résumé Dans cet article nous montrons l'existence d'(au moins) une solution de l'inéquation variationnelle (*) $$\left\{ {\begin{array}{*{20}c} {u \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ), u \geqslant \psi p.p. dans \Omega ,} \\ {\langle A(u),\upsilon - u\rangle + \int\limits_\Omega {{\rm H}(x,u,Du)(\upsilon - u) \geqslant 0,} } \\ {\forall \upsilon \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ), \upsilon \geqslant \psi p.p. dans \Omega ,} \\ \end{array} } \right.$$ où A est un opérateur de type Leray-Lions défini sur W o 1,p (Ω), à valeurs dans W−1,p′(Ω) et où la croissance de H est au plus en ¦Du¦p. L'obstacle ψ est une fonction mesurable à valeurs dans〉 $$\bar R$$ , la seule hypothèse étant que le convexe $$\{ \upsilon \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ):\upsilon \geqslant \psi p.p. dans \Omega \} $$ n'est pas vide: ainsi le cas ψ=−∞ (qui correspond aucas ou (*) est une équation) est également traité. Enfin il n'y a aucune hypothèse de régularité sur les données: Ω est un ouvert borné deR n, et A et H sont définis à partir de fonctions de Carathéodory.
    Abstract:
    Sunto In questo lavoro si prova un risultato di esistenza di soluzioni délia disequazione variazionale (*) $$\left\{ {\begin{array}{*{20}c} {u \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ), u \geqslant \psi q.o. in \Omega ,} \\ {\langle A(u),\upsilon - u\rangle + \int\limits_\Omega {{\rm H}(x,u,Du)(\upsilon - u) \geqslant 0,} } \\ {\forall \upsilon \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ), \upsilon \geqslant \psi q.o. in \Omega ,} \\ \end{array} } \right.$$ dove A é un operatore del lipo di Leray-Lions difinito suW 0 1,v (Ω) e a valori inW 1,v (Ω), e H é una funzione de Carathéodory che cresce al piú come |Du| v . La sola ipotesi che si fa su ψ é che $$\{ \upsilon \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ):\upsilon \geqslant \psi q.o. in \Omega \} \ne 0/$$ ; ψ é una funzione misurable a valori in $$\bar R$$ : questo permette ψ=−∞ e in tal caso (*) diventa una equazione. In fine, non viene fatta nessuna ipotesi di regolarita sui dati: Ω é un aperto limitato diR N ed A e H sono definiti a patire da funzioni di Caratheodory.
    Notes:
    Summary This paper proves the existence of (at least) one solution of the following variational inequality: (*) $$\left\{ {\begin{array}{*{20}c} {u \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ), u \geqslant \psi a.e. in \Omega ,} \\ {\langle A(u),\upsilon - u\rangle + \int\limits_\Omega {{\rm H}(x,u,Du)(\upsilon - u) \geqslant 0,} } \\ {\forall \upsilon \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ), u \geqslant \psi a.e. in \Omega .} \\ \end{array} } \right.$$ Here A is an operator of Leray-Lions type acting from W 0 1,p (Ω) into W−1,p′(Ω) and H grows like ¦Du¦p. The obstacle ψ is a measurable function with values in $$\bar R$$ , the only hypothesis being $$\{ \upsilon \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ):\upsilon \geqslant \psi a.e in \Omega \} \ne 0/$$ . This allows ψ to be −∞, recovering the case where (*) is an equation. Finally there is no smoothness assumptions on the data: Ω is a bounded open set inR N , A and H are defined from Carathéodory functions.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  8. 8
    Iyigun, Murat F. ; Owen, Ann L.
    Springer
    Published 1999
    Staff View
    ISSN:
    1573-7020
    Keywords:
    education ; work experience ; self-employment ; growth
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Economics
    Notes:
    Abstract We examine the implications for growth and development of the existence of two types of human capital: entrepreneurial and professional. Entrepreneurs accumulate human capital through a work-experience intensive process, whereas professionals’ human capital accumulation is education-intensive. Moreover, the return to entrepreneurship is uncertain. We show how skill-biased technological progress leads to changes in the composition of aggregate human capital; as technology improves, individuals devote less time to the accumulation of human capital through work experience and more to the accumulation of human capital through professional training. Thus, our model explains why entrepreneurs play a relatively more important role in intermediate-income countries and professionals are relatively more abundant in richer economies. It also shows that those countries that initially have too little of either entrepreneurial or professional human capital may end up in a development trap.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses