Search Results - (Author, Cooperation:F. Murat)
-
1A. A. Myburg ; D. Grattapaglia ; G. A. Tuskan ; U. Hellsten ; R. D. Hayes ; J. Grimwood ; J. Jenkins ; E. Lindquist ; H. Tice ; D. Bauer ; D. M. Goodstein ; I. Dubchak ; A. Poliakov ; E. Mizrachi ; A. R. Kullan ; S. G. Hussey ; D. Pinard ; K. van der Merwe ; P. Singh ; I. van Jaarsveld ; O. B. Silva-Junior ; R. C. Togawa ; M. R. Pappas ; D. A. Faria ; C. P. Sansaloni ; C. D. Petroli ; X. Yang ; P. Ranjan ; T. J. Tschaplinski ; C. Y. Ye ; T. Li ; L. Sterck ; K. Vanneste ; F. Murat ; M. Soler ; H. S. Clemente ; N. Saidi ; H. Cassan-Wang ; C. Dunand ; C. A. Hefer ; E. Bornberg-Bauer ; A. R. Kersting ; K. Vining ; V. Amarasinghe ; M. Ranik ; S. Naithani ; J. Elser ; A. E. Boyd ; A. Liston ; J. W. Spatafora ; P. Dharmwardhana ; R. Raja ; C. Sullivan ; E. Romanel ; M. Alves-Ferreira ; C. Kulheim ; W. Foley ; V. Carocha ; J. Paiva ; D. Kudrna ; S. H. Brommonschenkel ; G. Pasquali ; M. Byrne ; P. Rigault ; J. Tibbits ; A. Spokevicius ; R. C. Jones ; D. A. Steane ; R. E. Vaillancourt ; B. M. Potts ; F. Joubert ; K. Barry ; G. J. Pappas ; S. H. Strauss ; P. Jaiswal ; J. Grima-Pettenati ; J. Salse ; Y. Van de Peer ; D. S. Rokhsar ; J. Schmutz
Nature Publishing Group (NPG)
Published 2014Staff ViewPublication Date: 2014-06-12Publisher: Nature Publishing Group (NPG)Print ISSN: 0028-0836Electronic ISSN: 1476-4687Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsKeywords: Eucalyptus/classification/*genetics ; Evolution, Molecular ; Genetic Variation ; *Genome, Plant ; Inbreeding ; PhylogenyPublished by: -
2Staff View
Type of Medium: OnlinePublication Date: 2003Keywords: Ehe ; Familie ; Bildungsinvestition ; Investition ; Arbeitsplatzangebot ; Ökonomie ; Arbeitspapier ; TheorieLanguage: English -
3Staff View
ISSN: 1468-0343Source: Blackwell Publishing Journal Backfiles 1879-2005Topics: Political ScienceNotes: This paper develops a model for studying colonial investment in which the metropolitan government restricts the amount of investment in the colony in order to maximize the net profits earned in the colony. The model explicitly includes the threat of subversive activity by the indigenous colonial population. The analysis suggests why historically some countries but not others became colonies and why many colonies that were initially profitable subsequently become unprofitable and were abandoned. The model also has implications for the amount of investment in colonies, the allocation of indigenous colonial labor between production and subversive activity, and the distribution of income between colonial firms and the indigenous population.Type of Medium: Electronic ResourceURL: -
4Staff View
ISSN: 1572-929XKeywords: Variational inequalities ; penalization ; Lewy–Stampacchia's inequality.Source: Springer Online Journal Archives 1860-2000Topics: MathematicsNotes: Abstract In this paper we prove the Lewy–Stampacchia's inequality for elliptic variational inequalities with obstacle involving fairly general Leray–Lions operators. The main novelty of the paper is the method of proof, which uses the natural penalization. One of the steps of the proof consists in proving, again thanks to the natural penalization, that the nonnegative cone of W 0 1,p (Ω) is dense in the nonnegative cone of W-1,p′(Ω).Type of Medium: Electronic ResourceURL: -
5Staff View
ISSN: 1432-0673Source: Springer Online Journal Archives 1860-2000Topics: MathematicsPhysicsType of Medium: Electronic ResourceURL: -
6Staff View
ISSN: 1432-0606Keywords: Homogenization ; G-convergence ; H-convergence ; Quasi-linear PDESource: Springer Online Journal Archives 1860-2000Topics: MathematicsNotes: Abstract We consider in this paper the limit behavior of the solutionsu ɛ of the problem $$\begin{gathered} - div(a^\varepsilon Du^\varepsilon ) + \gamma u^\varepsilon = H^\varepsilon (x, u^\varepsilon , Du^\varepsilon ), \hfill \\ u^\varepsilon \in H_0^1 (\Omega ) \cap L^\infty (\Omega ), \hfill \\ \end{gathered}$$ whereH ɛ has quadratic growth inDu ɛ anda ɛ (x) is a family of matrices satisfying the general assumptions of abstract homogenization. We also consider the problem $$\begin{gathered} - div(a^\varepsilon Du^\varepsilon ) + G^\varepsilon (x, u^\varepsilon , Du^\varepsilon ) = f \in H^{ - 1} (\Omega ), \hfill \\ u^\varepsilon \in H_0^1 (\Omega ), G^\varepsilon (x, u^\varepsilon , Du^\varepsilon ) \in L^1 (\Omega ), u^\varepsilon G^\varepsilon (x, u^\varepsilon , Du^\varepsilon ) \in L^1 (\Omega ) \hfill \\ \end{gathered}$$ whereG ɛ has quadratic growth inDu ɛ and satisfiesG ɛ (x, s, ξ)s ≥ 0. Note that in this last modelu ɛ is in general unbounded, which gives extra difficulties for the homogenization process. In both cases we pass to the limit and obtain an homogenized equation having the same structure.Type of Medium: Electronic ResourceURL: -
7Staff View
ISSN: 1618-1891Source: Springer Online Journal Archives 1860-2000Topics: MathematicsDescription / Table of Contents: Résumé Dans cet article nous montrons l'existence d'(au moins) une solution de l'inéquation variationnelle (*) $$\left\{ {\begin{array}{*{20}c} {u \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ), u \geqslant \psi p.p. dans \Omega ,} \\ {\langle A(u),\upsilon - u\rangle + \int\limits_\Omega {{\rm H}(x,u,Du)(\upsilon - u) \geqslant 0,} } \\ {\forall \upsilon \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ), \upsilon \geqslant \psi p.p. dans \Omega ,} \\ \end{array} } \right.$$ où A est un opérateur de type Leray-Lions défini sur W o 1,p (Ω), à valeurs dans W−1,p′(Ω) et où la croissance de H est au plus en ¦Du¦p. L'obstacle ψ est une fonction mesurable à valeurs dans〉 $$\bar R$$ , la seule hypothèse étant que le convexe $$\{ \upsilon \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ):\upsilon \geqslant \psi p.p. dans \Omega \} $$ n'est pas vide: ainsi le cas ψ=−∞ (qui correspond aucas ou (*) est une équation) est également traité. Enfin il n'y a aucune hypothèse de régularité sur les données: Ω est un ouvert borné deR n, et A et H sont définis à partir de fonctions de Carathéodory.Abstract: Sunto In questo lavoro si prova un risultato di esistenza di soluzioni délia disequazione variazionale (*) $$\left\{ {\begin{array}{*{20}c} {u \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ), u \geqslant \psi q.o. in \Omega ,} \\ {\langle A(u),\upsilon - u\rangle + \int\limits_\Omega {{\rm H}(x,u,Du)(\upsilon - u) \geqslant 0,} } \\ {\forall \upsilon \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ), \upsilon \geqslant \psi q.o. in \Omega ,} \\ \end{array} } \right.$$ dove A é un operatore del lipo di Leray-Lions difinito suW 0 1,v (Ω) e a valori inW 1,v (Ω), e H é una funzione de Carathéodory che cresce al piú come |Du| v . La sola ipotesi che si fa su ψ é che $$\{ \upsilon \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ):\upsilon \geqslant \psi q.o. in \Omega \} \ne 0/$$ ; ψ é una funzione misurable a valori in $$\bar R$$ : questo permette ψ=−∞ e in tal caso (*) diventa una equazione. In fine, non viene fatta nessuna ipotesi di regolarita sui dati: Ω é un aperto limitato diR N ed A e H sono definiti a patire da funzioni di Caratheodory.Notes: Summary This paper proves the existence of (at least) one solution of the following variational inequality: (*) $$\left\{ {\begin{array}{*{20}c} {u \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ), u \geqslant \psi a.e. in \Omega ,} \\ {\langle A(u),\upsilon - u\rangle + \int\limits_\Omega {{\rm H}(x,u,Du)(\upsilon - u) \geqslant 0,} } \\ {\forall \upsilon \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ), u \geqslant \psi a.e. in \Omega .} \\ \end{array} } \right.$$ Here A is an operator of Leray-Lions type acting from W 0 1,p (Ω) into W−1,p′(Ω) and H grows like ¦Du¦p. The obstacle ψ is a measurable function with values in $$\bar R$$ , the only hypothesis being $$\{ \upsilon \in W_0^{1,v} (\Omega ) \cap L^\infty (\Omega ):\upsilon \geqslant \psi a.e in \Omega \} \ne 0/$$ . This allows ψ to be −∞, recovering the case where (*) is an equation. Finally there is no smoothness assumptions on the data: Ω is a bounded open set inR N , A and H are defined from Carathéodory functions.Type of Medium: Electronic ResourceURL: -
8Staff View
ISSN: 1573-7020Keywords: education ; work experience ; self-employment ; growthSource: Springer Online Journal Archives 1860-2000Topics: EconomicsNotes: Abstract We examine the implications for growth and development of the existence of two types of human capital: entrepreneurial and professional. Entrepreneurs accumulate human capital through a work-experience intensive process, whereas professionals’ human capital accumulation is education-intensive. Moreover, the return to entrepreneurship is uncertain. We show how skill-biased technological progress leads to changes in the composition of aggregate human capital; as technology improves, individuals devote less time to the accumulation of human capital through work experience and more to the accumulation of human capital through professional training. Thus, our model explains why entrepreneurs play a relatively more important role in intermediate-income countries and professionals are relatively more abundant in richer economies. It also shows that those countries that initially have too little of either entrepreneurial or professional human capital may end up in a development trap.Type of Medium: Electronic ResourceURL: