Search Results - (Author, Cooperation:F. Brock)
-
1M. Gallego Llorente ; E. R. Jones ; A. Eriksson ; V. Siska ; K. W. Arthur ; J. W. Arthur ; M. C. Curtis ; J. T. Stock ; M. Coltorti ; P. Pieruccini ; S. Stretton ; F. Brock ; T. Higham ; Y. Park ; M. Hofreiter ; D. G. Bradley ; J. Bhak ; R. Pinhasi ; A. Manica
American Association for the Advancement of Science (AAAS)
Published 2015Staff ViewPublication Date: 2015-10-10Publisher: American Association for the Advancement of Science (AAAS)Print ISSN: 0036-8075Electronic ISSN: 1095-9203Topics: BiologyChemistry and PharmacologyComputer ScienceMedicineNatural Sciences in GeneralPhysicsKeywords: African Continental Ancestry Group/*genetics ; Asia ; Biological Evolution ; Ethiopia ; Europe ; Genetic Variation ; *Genome, Human ; *Human Migration ; Humans ; MalePublished by: -
2T. Higham ; K. Douka ; R. Wood ; C. B. Ramsey ; F. Brock ; L. Basell ; M. Camps ; A. Arrizabalaga ; J. Baena ; C. Barroso-Ruiz ; C. Bergman ; C. Boitard ; P. Boscato ; M. Caparros ; N. J. Conard ; C. Draily ; A. Froment ; B. Galvan ; P. Gambassini ; A. Garcia-Moreno ; S. Grimaldi ; P. Haesaerts ; B. Holt ; M. J. Iriarte-Chiapusso ; A. Jelinek ; J. F. Jorda Pardo ; J. M. Maillo-Fernandez ; A. Marom ; J. Maroto ; M. Menendez ; L. Metz ; E. Morin ; A. Moroni ; F. Negrino ; E. Panagopoulou ; M. Peresani ; S. Pirson ; M. de la Rasilla ; J. Riel-Salvatore ; A. Ronchitelli ; D. Santamaria ; P. Semal ; L. Slimak ; J. Soler ; N. Soler ; A. Villaluenga ; R. Pinhasi ; R. Jacobi
Nature Publishing Group (NPG)
Published 2014Staff ViewPublication Date: 2014-08-22Publisher: Nature Publishing Group (NPG)Print ISSN: 0028-0836Electronic ISSN: 1476-4687Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsKeywords: Acculturation/*history ; Animals ; Bayes Theorem ; *Extinction, Biological ; *Geography ; History, Ancient ; Humans ; Mass Spectrometry ; *Neanderthals/genetics/physiology ; Radiometric Dating ; *Spatio-Temporal Analysis ; Time Factors ; Tool Use Behavior ; UncertaintyPublished by: -
3C. Bronk Ramsey ; R. A. Staff ; C. L. Bryant ; F. Brock ; H. Kitagawa ; J. van der Plicht ; G. Schlolaut ; M. H. Marshall ; A. Brauer ; H. F. Lamb ; R. L. Payne ; P. E. Tarasov ; T. Haraguchi ; K. Gotanda ; H. Yonenobu ; Y. Yokoyama ; R. Tada ; T. Nakagawa
American Association for the Advancement of Science (AAAS)
Published 2012Staff ViewPublication Date: 2012-10-23Publisher: American Association for the Advancement of Science (AAAS)Print ISSN: 0036-8075Electronic ISSN: 1095-9203Topics: BiologyChemistry and PharmacologyComputer ScienceMedicineNatural Sciences in GeneralPhysicsKeywords: Atmosphere/*chemistry ; Calibration ; Carbon Radioisotopes/analysis ; Fossils ; Geologic Sediments/*chemistry ; Lakes/*chemistry ; Radiometric Dating/*standards ; Trees/anatomy & histology/growth & developmentPublished by: -
4Staff View
ISSN: 0010-7565Topics: General, InterdisciplinaryURL: -
5Staff View
ISSN: 0010-7565Topics: General, InterdisciplinaryURL: -
6Staff View
ISSN: 0040-4039Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002Topics: Chemistry and PharmacologyType of Medium: Electronic ResourceURL: -
7Staff View
ISSN: 1432-0835Keywords: 49K20 ; 49N60 ; 35R35 ; 35B65 ; 35M10Source: Springer Online Journal Archives 1860-2000Topics: MathematicsNotes: Abstract Let Ω be a ball in ℝN, centered at zero, and letu be a minimizer of the nonconvex functional $$R(v) = \int_\Omega {\tfrac{1}{{1 + |\nabla v(x)|^2 }}dx} $$ over one of the classesC M := {w ∈W loc 1,∞ (∖) ∣ 0 ≤w(x) ≤M inΩ,w concave} orE M := {w ∈W loc 1,2 (Ω) ∣ 0 ≤w(x) ∖M in≤,Δw ∖ 0 inL′(∖)}of admissible functions. Thenu is not radial and not unique. Therefore one can further reduce the resistance of Newton's rotational “body of minimal resistance“ through symmetry breaking.Type of Medium: Electronic ResourceURL: -
8Staff View
ISSN: 1432-0835Keywords: Mathematics Subject Classification (1991):26D10, 51M16, 35J20, 35B99Source: Springer Online Journal Archives 1860-2000Topics: MathematicsNotes: Abstract. In this paper weighted Dirichlet-type inequalities for Steiner symmetrization are proved. Similar inequalities were known for the so-called starshaped rearrangements. Furthermore it is shown that the Steiner symmetrization is a mapping from $W^{1,1} _+ ({\Bbb R}^n)$ into itself.Type of Medium: Electronic ResourceURL: -
9Staff View
ISSN: 1432-0835Keywords: Mathematics Subject Classification:49K20, 49N60, 35R35, 35B65, 35M10Source: Springer Online Journal Archives 1860-2000Topics: MathematicsNotes: Abstract. Let $\Omega$ be a ball in ${\Bbb R}^N$ , centered at zero, and let $u$ be a minimizer of the nonconvex functional $$R(v)=\int_{\Omega} {1\over 1+\vert \nabla v(x)\vert^2}dx$$ over one of the classes $C_M:= \{ w\in W_{loc}^{1,\infty}(\Omega)\mid 0\leq w(x)\leq M$ in $\Omega$ , $w$ concave $\}$ or $E_M:= \{ w\in W_{loc}^{1,2}(\Omega)\mid 0\leq w(x)\leq M$ in $\Omega$ , $\Delta w\leq 0$ in ${\cal D}'(\Omega)\}$ of admissible functions. Then $u$ is not radial and not unique. Therefore one can further reduce the resistance of Newton's rotational “body of minimal resistance” through symmetry breaking.Type of Medium: Electronic ResourceURL: -
10Staff View
ISSN: 1618-2650Source: Springer Online Journal Archives 1860-2000Topics: Chemistry and PharmacologyType of Medium: Electronic ResourceURL: -
11Staff View
ISSN: 1618-2650Source: Springer Online Journal Archives 1860-2000Topics: Chemistry and PharmacologyType of Medium: Electronic ResourceURL: -
12Staff View
ISSN: 1618-2650Source: Springer Online Journal Archives 1860-2000Topics: Chemistry and PharmacologyType of Medium: Electronic ResourceURL: