Search Results - (Author, Cooperation:E. S. Fischer)

Showing 1 - 6 results of 6, query time: 0.25s Refine Results
  1. 1
    G. M. Lingaraju ; R. D. Bunker ; S. Cavadini ; D. Hess ; U. Hassiepen ; M. Renatus ; E. S. Fischer ; N. H. Thoma
    Nature Publishing Group (NPG)
    Published 2014
    Staff View
    Publication Date:
    2014-07-22
    Publisher:
    Nature Publishing Group (NPG)
    Print ISSN:
    0028-0836
    Electronic ISSN:
    1476-4687
    Topics:
    Biology
    Chemistry and Pharmacology
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    Adaptor Proteins, Signal Transducing ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; *Models, Molecular ; Multiprotein Complexes/*chemistry ; Peptide Hydrolases/*chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Transcription Factors/metabolism
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  2. 2
    G. Petzold ; E. S. Fischer ; N. H. Thoma
    Nature Publishing Group (NPG)
    Published 2016
    Staff View
    Publication Date:
    2016-02-26
    Publisher:
    Nature Publishing Group (NPG)
    Print ISSN:
    0028-0836
    Electronic ISSN:
    1476-4687
    Topics:
    Biology
    Chemistry and Pharmacology
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    Binding Sites/drug effects ; Casein Kinase Ialpha/chemistry/*metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Humans ; Ikaros Transcription Factor/chemistry/metabolism ; Models, Molecular ; Protein Binding/drug effects ; Proteolysis/drug effects ; Structure-Activity Relationship ; Substrate Specificity/drug effects ; Thalidomide/*analogs & derivatives/chemistry/metabolism/pharmacology ; Ubiquitin-Protein Ligases/chemistry/*metabolism ; Ubiquitination/drug effects
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  3. 3
    Staff View
    Publication Date:
    2016-04-01
    Publisher:
    Nature Publishing Group (NPG)
    Print ISSN:
    0028-0836
    Electronic ISSN:
    1476-4687
    Topics:
    Biology
    Chemistry and Pharmacology
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    Allosteric Regulation ; Apoproteins/chemistry/metabolism/ultrastructure ; Binding Sites ; *Biocatalysis ; Carrier Proteins/chemistry/metabolism/ultrastructure ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Cullin Proteins/chemistry/metabolism/ultrastructure ; DNA Damage ; DNA-Binding Proteins/chemistry/metabolism/ultrastructure ; Humans ; Kinetics ; Models, Molecular ; Multiprotein Complexes/chemistry/*metabolism/*ultrastructure ; Peptide Hydrolases/chemistry/*metabolism/*ultrastructure ; Protein Binding ; Ubiquitination ; Ubiquitins/metabolism
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  4. 4
    Staff View
    Publication Date:
    2014-07-22
    Publisher:
    Nature Publishing Group (NPG)
    Print ISSN:
    0028-0836
    Electronic ISSN:
    1476-4687
    Topics:
    Biology
    Chemistry and Pharmacology
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    Crystallography, X-Ray ; DNA-Binding Proteins/agonists/antagonists & inhibitors/chemistry/metabolism ; Homeodomain Proteins/metabolism ; Humans ; Models, Molecular ; Multiprotein Complexes/agonists/antagonists & inhibitors/chemistry/metabolism ; Peptide Hydrolases/*chemistry/metabolism ; Protein Binding ; Structure-Activity Relationship ; Substrate Specificity ; Thalidomide/analogs & derivatives/*chemistry/metabolism ; Transcription Factors/metabolism ; Ubiquitin-Protein Ligases/antagonists & inhibitors/*chemistry/metabolism
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  5. 5
    Sievers, Q. L., Gasser, J. A., Cowley, G. S., Fischer, E. S., Ebert, B. L.
    American Society of Hematology (ASH)
    Published 2018
    Staff View
    Publication Date:
    2018-09-21
    Publisher:
    American Society of Hematology (ASH)
    Print ISSN:
    0006-4971
    Electronic ISSN:
    1528-0020
    Topics:
    Biology
    Medicine
    Keywords:
    Myeloid Neoplasia, Lymphoid Neoplasia
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  6. 6
    Fischer, E. S. ; Lohaus, G. ; Heineke, D. ; Heldt, H. W.

    Copenhagen : Munksgaard International Publishers
    Published 1998
    Staff View
    ISSN:
    1399-3054
    Source:
    Blackwell Publishing Journal Backfiles 1879-2005
    Topics:
    Biology
    Notes:
    Accumulation of assimilates in source leaves of magnesium-deficient plants is a well-known feature. We had wished to determine whether metabolite concentrations in sink leaves and roots are affected by magnesium nutrition. Eight-week-old spinach plants were supplied either with a complete nutrient solution (control plants) or with one lacking Mg (deficient plants) for 12 days. Shoot and root fresh weights and dry weights were lower in deficient than in control plants. Mg concentrations in deficient plants were 11% of controls in source leaves, 12% in sink leaves and 26% in roots, respectively. As compared with controls, increases were found in starch and amino acids in source leaves and in sucrose, hexoses, starch and amino acids in sink leaves, whereas they were only slightly enhanced in roots. In phloem sap of magnesium-deficient and control plants no differences in sucrose and amino acid concentrations were found. To prove that sink leaves were the importing organs they were shaded, which did not alter the response to magnesium deficiency as compared with that without shading. Since in the shaded sink leaves the photosynthetic production of metabolites could be excluded, those carbohydrates and amino acids that accumulated in the sink leaves of the deficient plants must have been imported from the source leaves. It is concluded that in magnesium-deficient spinach plants the growth of sink leaves and roots was not limited by carbohydrate or amino acid supply. It is proposed that the accumulation of assimilates in the source leaves of Mg-deficient plants results from a lack of utilization of assimilates in the sink leaves.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses