Search Results - (Author, Cooperation:E. Barr)
-
1Staff View
Publication Date: 2018-03-06Publisher: Oxford University PressPrint ISSN: 0035-8711Electronic ISSN: 1365-2966Topics: PhysicsPublished by: -
2Lauren E. Barr, Simon A. R. Horsley, Ian R. Hooper, Jake K. Eager, Cameron P. Gallagher, Samuel M. Hornett, Alastair P. Hibbins, and Euan Hendry
American Physical Society (APS)
Published 2018Staff ViewPublication Date: 2018-04-19Publisher: American Physical Society (APS)Print ISSN: 1098-0121Electronic ISSN: 1095-3795Topics: PhysicsKeywords: Surface physics, nanoscale physics, low-dimensional systemsPublished by: -
3Suvankar Majumdar, Rommel Tirona, Hafsat Mashegu, Jagdish Desai, Neil T. Shannon, Marshall Summar, Gary Cunningham, Deepika Darbari, Robert Nickel, Andrew Campbell, Frederick E. Barr
Wiley-Blackwell
Published 2018Staff ViewPublication Date: 2018-02-08Publisher: Wiley-BlackwellPrint ISSN: 0007-1048Electronic ISSN: 1365-2141Topics: MedicinePublished by: -
4E. F. Keane ; S. Johnston ; S. Bhandari ; E. Barr ; N. D. Bhat ; M. Burgay ; M. Caleb ; C. Flynn ; A. Jameson ; M. Kramer ; E. Petroff ; A. Possenti ; W. van Straten ; M. Bailes ; S. Burke-Spolaor ; R. P. Eatough ; B. W. Stappers ; T. Totani ; M. Honma ; H. Furusawa ; T. Hattori ; T. Morokuma ; Y. Niino ; H. Sugai ; T. Terai ; N. Tominaga ; S. Yamasaki ; N. Yasuda ; R. Allen ; J. Cooke ; J. Jencson ; M. M. Kasliwal ; D. L. Kaplan ; S. J. Tingay ; A. Williams ; R. Wayth ; P. Chandra ; D. Perrodin ; M. Berezina ; M. Mickaliger ; C. Bassa
Nature Publishing Group (NPG)
Published 2016Staff ViewPublication Date: 2016-02-26Publisher: Nature Publishing Group (NPG)Print ISSN: 0028-0836Electronic ISSN: 1476-4687Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsPublished by: -
5Staff View
ISSN: 1471-4159Source: Blackwell Publishing Journal Backfiles 1879-2005Topics: MedicineNotes: Abstract: 45Ca2+ uptake by synaptosomes isolated from cerebral cortex, cerebellum, midbrain, and brain stem of male Sprague-Dawley rats was measured at 1-, 3-, 5-, 15-, 30-, and 60-s time periods. The fastest rate of depolarization-dependent calcium uptake occurred in each brain region between 0 and 1 s. Uptake rates dropped off quickly with 3–5-s rates at approximately 15–20% of those observed at 0–1 s in cerebral cortex, cerebellum, and midbrain. Uptake rates at the 1–3-s interval were maintained at a relatively high rate in these three brain regions suggesting mixed fast- and slow-phase processes. The magnitude and rate of 45Ca2+ uptake were similar in synaptosomes from cerebral cortex, cerebellum, and midbrain but were significantly less in brain stem synaptosomes. These results suggest a fast and a slow component to voltage-dependent 45Ca2+ uptake by presynaptic nerve terminals from various brain regions.Type of Medium: Electronic ResourceURL: -
6Staff View
ISSN: 1749-6632Source: Blackwell Publishing Journal Backfiles 1879-2005Topics: Natural Sciences in GeneralType of Medium: Electronic ResourceURL: -
7Staff View
ISSN: 0368-1874Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002Topics: Chemistry and PharmacologyType of Medium: Electronic ResourceURL: -
8Jain, Ajay N. ; Dietterich, Thomas G. ; Lathrop, Richard H. ; Chapman, David ; Critchlow, Roger E. ; Bauer, Barr E. ; Webster, Teresa A. ; Lozano-Perez, Tomas
Springer
Published 1994Staff ViewISSN: 1573-4951Keywords: Automated prediction ; QSAR ; Molecular shape ; Ligand binding ; Molecular recognitionSource: Springer Online Journal Archives 1860-2000Topics: Chemistry and PharmacologyNotes: Summary Building predictive models for iterative drug design in the absence of a known target protein structure is an important challenge. We present a novel technique, Compass, that removes a major obstacle to accurate prediction by automatically selecting conformations and alignments of molecules without the benefit of a characterized active site. The technique combines explicit representation of molecular shape with neural network learning methods to produce highly predictive models, even across chemically distinct classes of molecules. We apply the method to predicting human perception of musk odor and show how the resulting models can provide graphical guidance for chemical modifications.Type of Medium: Electronic ResourceURL: