Search Results - (Author, Cooperation:D. Huson)
-
1K. I. Bos ; K. M. Harkins ; A. Herbig ; M. Coscolla ; N. Weber ; I. Comas ; S. A. Forrest ; J. M. Bryant ; S. R. Harris ; V. J. Schuenemann ; T. J. Campbell ; K. Majander ; A. K. Wilbur ; R. A. Guichon ; D. L. Wolfe Steadman ; D. C. Cook ; S. Niemann ; M. A. Behr ; M. Zumarraga ; R. Bastida ; D. Huson ; K. Nieselt ; D. Young ; J. Parkhill ; J. E. Buikstra ; S. Gagneux ; A. C. Stone ; J. Krause
Nature Publishing Group (NPG)
Published 2014Staff ViewPublication Date: 2014-08-21Publisher: Nature Publishing Group (NPG)Print ISSN: 0028-0836Electronic ISSN: 1476-4687Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsKeywords: Animals ; Bone and Bones/microbiology ; Europe/ethnology ; Genome, Bacterial/*genetics ; Genomics ; History, Ancient ; Human Migration/history ; Humans ; Mycobacterium tuberculosis/*genetics ; Peru ; Phylogeny ; Pinnipedia/*microbiology ; Tuberculosis/*history/*microbiology/transmission ; Zoonoses/*history/*microbiology/transmissionPublished by: -
2Staff View
ISSN: 1572-9168Keywords: 52C20 ; 05B45 ; 05C10Source: Springer Online Journal Archives 1860-2000Topics: MathematicsNotes: Abstract There exist exactly 4044 topological types of 4-colorable tile-4-transitive tilings of the plane. These can be obtained by systematic application of two geometric algorithms, edge-contraction and vertex-truncation, to all tile-3-transitive tilings of the plane.Type of Medium: Electronic ResourceURL: -
3Staff View
ISSN: 1432-0444Source: Springer Online Journal Archives 1860-2000Topics: Computer ScienceMathematicsNotes: Abstract. {There exist precisely 149 topological types of semipolytopal tile-transitive tilings of E 3 by ``extetrahedra'' (obtained from tetrahedra by introducing certain new vertices of degree 2 ). Dualization gives rise to 149 types of 4-regular vertex-transitive tilings. The 4-coordinated networks carried by these tilings are closely related to crystal structures such as zeolites or diamond. These results are obtained using ``combinatorial tiling theory.''}Type of Medium: Electronic ResourceURL: -
4Staff View
ISSN: 1432-0444Source: Springer Online Journal Archives 1860-2000Topics: Computer ScienceMathematicsNotes: Abstract. There exist precisely 914, 58, and 46 equivariant types of tile-transitive tilings of three-dimensional euclidean space by topological cubes, octahedra, and tetrahedra, that fall into 11, 3, and 9 topological families, respectively. Representatives are described for all topological families. A general method for obtaining results of this kind is introduced.Type of Medium: Electronic ResourceURL: -
5Staff View
ISSN: 1432-0444Source: Springer Online Journal Archives 1860-2000Topics: Computer ScienceMathematicsNotes: Abstract. Consider the d -dimensional euclidean space E d . Two main results are presented: First, for any N∈ N, the number of types of periodic equivariant tilings $({\cal T},\Gamma)$ that have precisely N orbits of (2,4,6, . . . ) -flags with respect to the symmetry group Γ , is finite. Second, for any N∈ N, the number of types of convex, periodic equivariant tilings $({\cal T},\Gamma)$ that have precisely N orbits of tiles with respect to the symmetry group Γ , is finite. The former result (and some generalizations) is proved combinatorially, using Delaney symbols, whereas the proof of the latter result is based on both geometric arguments and Delaney symbols. 〈lsiheader〉 〈onlinepub〉7 August, 1998 〈editor〉Editors-in-Chief: &lsilt;a href=../edboard.html#chiefs&lsigt;Jacob E. Goodman, Richard Pollack&lsilt;/a&lsigt; 〈pdfname〉20n2p143.pdf 〈pdfexist〉yes 〈htmlexist〉no 〈htmlfexist〉no 〈texexist〉no 〈sectionname〉 〈/lsiheader〉Type of Medium: Electronic ResourceURL: