Search Results - (Author, Cooperation:A. L. Archibald)
-
1Y. Jiang ; M. Xie ; W. Chen ; R. Talbot ; J. F. Maddox ; T. Faraut ; C. Wu ; D. M. Muzny ; Y. Li ; W. Zhang ; J. A. Stanton ; R. Brauning ; W. C. Barris ; T. Hourlier ; B. L. Aken ; S. M. Searle ; D. L. Adelson ; C. Bian ; G. R. Cam ; Y. Chen ; S. Cheng ; U. DeSilva ; K. Dixen ; Y. Dong ; G. Fan ; I. R. Franklin ; S. Fu ; P. Fuentes-Utrilla ; R. Guan ; M. A. Highland ; M. E. Holder ; G. Huang ; A. B. Ingham ; S. N. Jhangiani ; D. Kalra ; C. L. Kovar ; S. L. Lee ; W. Liu ; X. Liu ; C. Lu ; T. Lv ; T. Mathew ; S. McWilliam ; M. Menzies ; S. Pan ; D. Robelin ; B. Servin ; D. Townley ; W. Wang ; B. Wei ; S. N. White ; X. Yang ; C. Ye ; Y. Yue ; P. Zeng ; Q. Zhou ; J. B. Hansen ; K. Kristiansen ; R. A. Gibbs ; P. Flicek ; C. C. Warkup ; H. E. Jones ; V. H. Oddy ; F. W. Nicholas ; J. C. McEwan ; J. W. Kijas ; J. Wang ; K. C. Worley ; A. L. Archibald ; N. Cockett ; X. Xu ; B. P. Dalrymple
American Association for the Advancement of Science (AAAS)
Published 2014Staff ViewPublication Date: 2014-06-07Publisher: American Association for the Advancement of Science (AAAS)Print ISSN: 0036-8075Electronic ISSN: 1095-9203Topics: BiologyChemistry and PharmacologyComputer ScienceMedicineNatural Sciences in GeneralPhysicsKeywords: Amino Acid Sequence ; Animals ; Fatty Acids, Volatile/metabolism/physiology ; Gene Expression Regulation ; Genome ; Keratins, Hair-Specific/genetics ; Lipid Metabolism/genetics/*physiology ; Molecular Sequence Data ; Phylogeny ; Rumen/metabolism/*physiology ; Sheep, Domestic/classification/*genetics/*metabolism ; Transcriptome ; Wool/growth & developmentPublished by: -
2M. A. Groenen ; A. L. Archibald ; H. Uenishi ; C. K. Tuggle ; Y. Takeuchi ; M. F. Rothschild ; C. Rogel-Gaillard ; C. Park ; D. Milan ; H. J. Megens ; S. Li ; D. M. Larkin ; H. Kim ; L. A. Frantz ; M. Caccamo ; H. Ahn ; B. L. Aken ; A. Anselmo ; C. Anthon ; L. Auvil ; B. Badaoui ; C. W. Beattie ; C. Bendixen ; D. Berman ; F. Blecha ; J. Blomberg ; L. Bolund ; M. Bosse ; S. Botti ; Z. Bujie ; M. Bystrom ; B. Capitanu ; D. Carvalho-Silva ; P. Chardon ; C. Chen ; R. Cheng ; S. H. Choi ; W. Chow ; R. C. Clark ; C. Clee ; R. P. Crooijmans ; H. D. Dawson ; P. Dehais ; F. De Sapio ; B. Dibbits ; N. Drou ; Z. Q. Du ; K. Eversole ; J. Fadista ; S. Fairley ; T. Faraut ; G. J. Faulkner ; K. E. Fowler ; M. Fredholm ; E. Fritz ; J. G. Gilbert ; E. Giuffra ; J. Gorodkin ; D. K. Griffin ; J. L. Harrow ; A. Hayward ; K. Howe ; Z. L. Hu ; S. J. Humphray ; T. Hunt ; H. Hornshoj ; J. T. Jeon ; P. Jern ; M. Jones ; J. Jurka ; H. Kanamori ; R. Kapetanovic ; J. Kim ; J. H. Kim ; K. W. Kim ; T. H. Kim ; G. Larson ; K. Lee ; K. T. Lee ; R. Leggett ; H. A. Lewin ; Y. Li ; W. Liu ; J. E. Loveland ; Y. Lu ; J. K. Lunney ; J. Ma ; O. Madsen ; K. Mann ; L. Matthews ; S. McLaren ; T. Morozumi ; M. P. Murtaugh ; J. Narayan ; D. T. Nguyen ; P. Ni ; S. J. Oh ; S. Onteru ; F. Panitz ; E. W. Park ; H. S. Park ; G. Pascal ; Y. Paudel ; M. Perez-Enciso ; R. Ramirez-Gonzalez ; J. M. Reecy ; S. Rodriguez-Zas ; G. A. Rohrer ; L. Rund ; Y. Sang ; K. Schachtschneider ; J. G. Schraiber ; J. Schwartz ; L. Scobie ; C. Scott ; S. Searle ; B. Servin ; B. R. Southey ; G. Sperber ; P. Stadler ; J. V. Sweedler ; H. Tafer ; B. Thomsen ; R. Wali ; J. Wang ; S. White ; X. Xu ; M. Yerle ; G. Zhang ; J. Zhang ; S. Zhao ; J. Rogers ; C. Churcher ; L. B. Schook
Nature Publishing Group (NPG)
Published 2012Staff ViewPublication Date: 2012-11-16Publisher: Nature Publishing Group (NPG)Print ISSN: 0028-0836Electronic ISSN: 1476-4687Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsKeywords: Animals ; Demography ; Genome/*genetics ; Models, Animal ; Molecular Sequence Data ; *Phylogeny ; Population Dynamics ; Sus scrofa/*classification/*geneticsPublished by: -
3Burkard, C., Opriessnig, T., Mileham, A. J., Stadejek, T., Ait-Ali, T., Lillico, S. G., Whitelaw, C. B. A., Archibald, A. L.
The American Society for Microbiology (ASM)
Published 2018Staff ViewPublication Date: 2018-08-01Publisher: The American Society for Microbiology (ASM)Print ISSN: 0022-538XElectronic ISSN: 1098-5514Topics: MedicinePublished by: -
4Wilmut, I. ; Archibald, A. L. ; McClenaghan, M. ; Simons, J. P. ; Whitelaw, C. B. A. ; Clark, A. J.
Springer
Published 1991Staff ViewISSN: 1420-9071Keywords: Gene transfer ; gene modification ; gene expression ; livestock ; transgenic animal ; pharmaceutical proteins ; milk compositionSource: Springer Online Journal Archives 1860-2000Topics: BiologyMedicineNotes: Abstract There is every reason to expect that it will be possible within the next few years to begin to use farm animals to produce large quantities of some of the human proteins that are needed for the treatment of disease. Revolutionary new opportunities for the production of novel proteins in milk have been created by the development of methods for gene transfer. Exploitation of these opportunities depends upon selection and cloning of milk protein genes and identification of the sequences that govern tissue specific hormonally induced expression in the mammary gland. Studies with three genes, ovine β-lactoglobulin, rat β-casein and whey acidic protein of rat and mouse, suggest that they may all meet this requirement. Fragments of the ovine β-lactoglobulin, murine whey acidic protein and rabbit β-casein genes have directed production of novel proteins in the milk of transgenic mice, sheep, rabbits and pigs. The proteins were biologically active and usually co-migrated with authentic proteins. In early experiments, protein concentration was low, but our recent observations suggest that fusion genes containing genomic clones direct production of concentrations of protein that are suitable for commercial exploitation. In the longer term, two approaches may offer the potential of more reliable expression. Control elements capable of directing expression that is independent of site of insertion of the gene, but dependent on the number of copies of the gene, have been identified for a small number of genes. The availability of such elements for the milk protein genes would increase the reliability of gene expression considerably. Alternatively, targeted mutation of genes may allow the insertion of coding sequences within an existing gene so avoiding position effects.Type of Medium: Electronic ResourceURL: -
5Archibald, A. L. ; Haley, C. S. ; Brown, J. F. ; Couperwhite, S. ; McQueen, H. A. ; Nicholson, D. ; Coppieters, W. ; Weghe, A. ; Stratil, A. ; Winterø, A. K. ; Fredholm, M. ; Larsen, N. J. ; Nielsen, V. H. ; Milan, D. ; Woloszyn, N. ; Robic, A. ; Dalens, M. ; Riquet, J. ; Gellin, J. ; Caritez, J. -C. ; Burgaud, G. ; Ollivier, L. ; Bidanel, J. -P. ; Vaiman, M. ; Renard, C.
Springer
Published 1995Staff ViewISSN: 1432-1777Source: Springer Online Journal Archives 1860-2000Topics: BiologyMedicineNotes: Abstract A linkage map of the porcine genome has been developed by segregation analysis of 239 genetic markers. Eighty-one of these markers correspond to known genes. Linkage groups have been assigned to all 18 autosomes plus the X Chromosome (Chr). As 69 of the markers on the linkage map have also been mapped physically (by others), there is significant integration of linkage and physical map data. Six informative markers failed to show linkage to these maps. As in other species, the genetic map of the heterogametic sex (male) was significantly shorter (∼16.5 Morgans) than the genetic map of the homogametic sex (female) (∼21.5 Morgans). The sex-averaged genetic map of the pig was estimated to be ∼18 Morgans in length. Mapping information for 61 Type I loci (genes) enhances the contribution of the pig gene map to comparative gene mapping. Because the linkage map incorporates both highly polymorphic Type II loci, predominantly microsatellites, and Type I loci, it will be useful both for large experiments to map quantitative trait loci and for the subsequent isolation of trait genes following a comparative and candidate gene approach.Type of Medium: Electronic ResourceURL: -
6Staff View
ISSN: 1432-1777Source: Springer Online Journal Archives 1860-2000Topics: BiologyMedicineType of Medium: Electronic ResourceURL: -
7Staff View
ISSN: 1432-1777Source: Springer Online Journal Archives 1860-2000Topics: BiologyMedicineNotes: Abstract Porcine flow-sorted Chromosome (Chr) 13 was PCR amplified with primers based on porcine short interspersed element (SINE) sequences. The product was cloned, gridded in microtiter plates, and screened with a [GT]10 oligonucleotide which gave 45 positive clones. Sequencing of these clones showed that 36 were unique, and 26 [GT]n microsatellites were characterized. Six other simple repeat sequences, the majority of which were associated with the 3′ end of the SINE sequence, were also detected. Twenty-one primers sets were selected, and 13 of these detected useful polymorphisms in the grandparents (n=26) of the European porcine mapping collaboration (PiGMaP) reference families. These 13 markers were mapped in the “PiGMaP” reference families, and a two-point linkage analysis was performed. The Lod scores indicated that three of the markers were not linked and the remaining 11 formed two linkage groups of two and nine markers respectively. The larger linkage group was also linked to the transferrin locus, permitting assignment of nine markers to porcine Chr 13.Type of Medium: Electronic ResourceURL: