Search Results - (Author, Cooperation:A. Gagnidze)
-
1S. C. Johnson ; M. E. Yanos ; E. B. Kayser ; A. Quintana ; M. Sangesland ; A. Castanza ; L. Uhde ; J. Hui ; V. Z. Wall ; A. Gagnidze ; K. Oh ; B. M. Wasko ; F. J. Ramos ; R. D. Palmiter ; P. S. Rabinovitch ; P. G. Morgan ; M. M. Sedensky ; M. Kaeberlein
American Association for the Advancement of Science (AAAS)
Published 2013Staff ViewPublication Date: 2013-11-16Publisher: American Association for the Advancement of Science (AAAS)Print ISSN: 0036-8075Electronic ISSN: 1095-9203Topics: BiologyChemistry and PharmacologyComputer ScienceMedicineNatural Sciences in GeneralPhysicsKeywords: Animals ; Brain/drug effects/enzymology/pathology ; Disease Models, Animal ; Electron Transport Complex I/genetics/metabolism ; Glycolysis/drug effects ; Leigh Disease/*drug therapy/genetics/pathology ; Mice ; Mice, Knockout ; Mice, Mutant Strains ; Mitochondria/drug effects/enzymology ; Mitochondrial Diseases/*drug therapy/genetics/pathology ; *Molecular Targeted Therapy ; Multiprotein Complexes/*antagonists & inhibitors ; Neuroprotective Agents/*therapeutic use ; Sirolimus/*therapeutic use ; TOR Serine-Threonine Kinases/*antagonists & inhibitorsPublished by: -
2Staff View
ISSN: 1572-9176Keywords: Heat equation ; small parameter ; concentrated perturbation ; complete asymptotic expansionSource: Springer Online Journal Archives 1860-2000Topics: MathematicsNotes: Abstract The heat equation with a small parameter, $$\left( {1 + \varepsilon ^{ - m} \chi \left( {\frac{x}{\varepsilon }} \right)} \right)ut = u_{xx} $$ , is considered, where ε ∈ (0, 1), m 〈 1 and χ is a finite function. A complete asymptotic expansion of the solution in powers ε is constructed.Type of Medium: Electronic ResourceURL: -
3Staff View
ISSN: 1572-9176Keywords: Parabolic systems ; uniqueness classes ; influence of domain geometrySource: Springer Online Journal Archives 1860-2000Topics: MathematicsNotes: Abstract General boundary value problems are considered for general parabolic (in the Douglas–Nirenberg–Solonnikov sense) systems. The dependence of solution uniqueness classes of these problems on the geometry of a nonbounded domain is established.Type of Medium: Electronic ResourceURL: -
4Staff View
ISSN: 1573-8795Source: Springer Online Journal Archives 1860-2000Topics: MathematicsNotes: Abstract The dependence of the uniqueness classes of the solutions of boundary value problems for second-order parabolic equations on the coefficients of the equation and on the geometry of an unbounded domain is investigated.Type of Medium: Electronic ResourceURL: