ILSE — IPN Library Search Engine

Leibniz Institute for Science and Mathematics Education, Kiel

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (61)
  • 1
    Publication Date: 2018-04-16
    Description: Publication date: 1 September 2018 Source: Icarus, Volume 311 Author(s): Eri Tatsumi, Deborah Domingue, Naru Hirata, Kohei Kitazato, Faith Vilas, Susan Lederer, Paul R. Weissman, Stephen C. Lowry, Seiji Sugita We present photometry of the S-type near-Earth asteroid 25143 Itokawa based on both ground-based observations in the UBVRI bands and measurements from the AMICA/Hayabusa spacecraft observations with ul-, b-, v-, w-, x-, and p-filters. Hayabusa observed Itokawa around opposition during the rendezvous, thus providing a unique set of observations of this asteroid. We fit the phase curve measurements with both the Classic Hapke Model (Hapke, 1981, 1984, 1986) and Modern Hapke Model (Hapke, 2002, 2008, 2012a) and thereby extract the physical properties of Itokawa's surface regolith. The single-scattering albedo (0.57 ± 0.05) is larger than that derived for Eros (0.43 ± 0.02), another S-type near-Earth asteroid visited by a spacecraft. Both models indicate a regolith that is forward-scattering in nature. From the hockey stick relationship derived for the single-particle phase function (Hapke, 2012b), both modeling results suggest a regolith comprised of rough surfaced particles with a low density of internal scatterers. Application of the Modern Hapke model derives porosity parameter values from 1 to 1.1, for BVR bands, which corresponds to porosity values between 77–79%. This suggests the surface of Itokawa is very fluffy and the large boulders may be bonded with smaller size particles, typical of the particle sizes observed in Muses Sea. Both models also provide similar geometric albedo values (0.27 ± 0.02) at the V-band wavelength, which are equivalent to Eros’ geometric albedo.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-04-15
    Description: Publication date: 1 September 2018 Source: Icarus, Volume 311 Author(s): M.N. De Prá, N. Pinilla-Alonso, J.M. Carvano, J. Licandro, H. Campins, T. Mothé-Diniz, J. De León, V. Alí-Lagoa The Cybele and Hilda dynamical groups delimit the outer edge of the asteroid belt. Their compositional distribution is a key element to constrain evolutionary models of the Solar System. In this paper, we present a compositional analysis of these populations using spectroscopic observations, SDSS and NEOWISE data. As part of the PRIMASS (Primitive Asteroids Spectroscopic Survey), we acquired visible spectra of 18 objects in Hilda or Cybele groups with the Goodman High Throughput Spectrometer at the 4.1 m SOAR telescope and 20 near-IR spectra of Hilda objects with Near Infrared Camera Spectrograph at the 3.56 m TNG. The sample is enlarged with spectra taken from the literature in order to increase our statistical analysis. The spectra were inspected for aqueous alteration bands and other spectral features that can be linked to compositional constraints. The analysis shows a continuous distribution of compositions from the main-belt to the Cybele, Hilda and Trojan regions. We also identify a population in the Trojans group not present in Hilda or Cybele objects.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-04-15
    Description: Publication date: 1 September 2018 Source: Icarus, Volume 311 Author(s): J.E. Wickham-Eade, M.J. Burchell, M.C. Price, K.H. Harriss Results are presented for the fragmentation of projectiles in laboratory experiments. 1.5 mm cubes and spheres of basalt and shale were impacted onto water at normal incidence and speeds from 0.39 to 6.13 km s −1 ; corresponding to peak shock pressures 0.7–32 GPa. Projectile fragments were collected and measured (over 100,000 fragments in some impacts, at sizes down to 10 µm). Power laws were fitted to the cumulative fragment size distributions and the evolution of the exponent vs. impact speed and peak shock pressure found. The gradient of each of these power laws increased with increasing impact speed/peak shock pressure. The percentage of the projectiles recovered in the impacts was found and used to estimate projectile remnant survival in different solar system impact scenarios at the mean impact speed appropriate to that scenario. For Pluto, the Moon and in the asteroid belt approximately 55%, 40% and 15%, respectively, of an impactor could survive and be recovered at an impact site. Finally, the catastrophic disruption energy densities of basalt and shale were measured and found to be 24 × 10 4  J kg −1 and 9 × 10 4  J kg −1 , respectively, a factor of ∼2.5 difference. These corresponded to peak shock pressures of 1 to 1.5 GPa (basalt), and 0.8 GPa (shale). This is for near normal-incidence impacts where tensile strength is dominant. For shallow angle impacts we suggest shear effects dominate, resulting in lower critical energy densities and peak shock pressures. We also determine a method to ascertain information about fragment sizes in solar system impact events using a known size of impactor. The results are used to predict projectile fragments sizes for the Veneneia and Rheasilvia crater forming impacts on Vesta, and similar impacts on Ceres.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-15
    Description: Publication date: 1 September 2018 Source: Icarus, Volume 311 Author(s): M. Luginin, A. Fedorova, D. Belyaev, F. Montmessin, O. Korablev, J.-L. Bertaux SPICAV IR, one channel of SPICAV/SOIR instrument suite onboard Venus Express, performed solar occultation measurements of the atmosphere at terminators in 0.65–1.7 µm spectral range. We analyze the properties of the upper part of the Venus aerosol layer (upper haze, 70 − 95 km altitude) from 798 observations performed from May 2006 through November 2014. Vertical profiles of slant optical depth, extinction coefficient, effective radius, and number density of haze particles from 222 orbits were analyzed in a previous publication (Luginin et al., 2016); their diurnal, latitudinal, and interannual variabilities were investigated. The present paper is devoted to analysis of scale heights and properties of detached haze layers from 147 orbits at mid-to-high northern latitudes, where the best spatial resolution was obtained. Scale heights retrieved from 43 orbits were equal to 4 − 5.5 km at the North Pole (82°N-90°N) decreasing to 2 − 4 km at 60°N − 80°N latitudes. As an explanation of such latitudinal variations, we propose a mechanism based on vertical transport driven by winds that are directed upward at the North Pole and downward at 60°N − 80°N latitudes. Detached layers were detected in 93 occultations at 58°N − 90°N. The detached layers are presumably formed through condensation of water vapor on droplets of sulfuric acid water solution; they were mostly seen at 80 − 88 km at the morning terminator, and at 84 − 90 km at the evening one. This difference in altitude of the detached layers can be explained by diurnal variations in thermal structure of Venusian mesosphere. The vertical optical depth of detached layers varies broadly around the mean τ DL ∼ 0.8 − 3·10 −3 ; no difference between the morning and the evening terminators was observed. The effective radius and number density of aerosol particles in the detached layers group around a very wide maximum at the morning terminator (0.65 ± 0.25 µm and 0.6 ± 0.4 cm −3 ) and two maxima at the evening terminator (0.4 ± 0.1 µm and 0.85 ± 0.15 µm; 0.3 ± 0.2 cm −3 and 4.5 ± 2.5 cm −3 ). This could be explained by differences in initial altitudes at which condensation of particles occurs.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-04-15
    Description: Publication date: 1 September 2018 Source: Icarus, Volume 311 Author(s): James A. Kwiecinski, Andrew L. Krause, Robert A. Van Gorder As observations of ‘Oumuamua were collected well into the outbound component of its hyperbolic orbit, it is not obvious what effects Sol had on its rotational dynamics. Therefore, we simulate ‘Oumuamua as a prolate spheroid and triaxial ellipsoid of uniform mass density and show that the experimentally observed angular velocities remain largely unchanged during ‘Oumuamua’s flyby, supporting previous work suggesting that, in the absence of a collision during its interstellar journey, the asteroid was tumbling in the same manner as when it left its original solar system.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): Rebecca M.E. Williams, Michael C. Malin, Kathryn M. Stack, David M. Rubin The stratigraphic context of rock layers is a critical piece of information needed for accurate reconstruction of their geologic history. Although sedimentary rocks are widespread in Gale crater, efforts to deduce stratigraphic relationships of rocks were challenging early in the Mars Science Laboratory mission because vertical bedrock exposures were relatively rare along the first ∼3 km the rover traversed across Aeolis Palus. Potential insights into the three-dimensional configuration of rock layers were made once the rover passed Dingo Gap, especially in the informally-named Kylie and Kimberley regions. Here, the terrain exhibits low relief ( 〈 10 m) cliffs, some of which are continuous over lengths > 75 m. Curiosity Mastcam and Navcam images show that the cliffs are capped by resistant, bench-forming rock layers corresponding to two facies: a poorly sorted, weakly stratified pebble conglomerate, and a massive, dark-toned, vuggy sandstone. In places, the inclination of the topographic surface (northward ∼2° to 3°) is similar to the apparent dip of the underlying strata, suggesting the presence of dip slopes in an area inferred to be generally flat-lying, conformable rock units. Further, we assessed potential strata correlations via plane-fitting exercises and a regional comparison to other capping strata. We speculate that bench-forming strata in the study region could be part of a widespread package of draping strata (the Siccar Point group) that post-dates deposition and exhumation of the lower strata of Mount Sharp.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): Carsten Schult, Peter Brown, Petr Pokorný, Gunter Stober, Jorge L. Chau Results from a meteor head echo shower survey using the quasi continuous meteor observations of the high power large aperture radar MAARSY, located in northern Norway (69.30° N , 16.04° E ) are presented. The data set comprises 760 000 head echoes detected during two and half years sensitive to an effective limiting masses below 10 − 8 kg. Using a wavelet shower search algorithm, we identified 33 meteor showers in the data set all of which are found in the IAU meteor shower catalog. We find  ∼ 1% of all measured head echoes at these masses are associated with meteor showers. Comparison of shower radiants from this survey with the observation of the Canadian Meteor Orbit radar (CMOR) transverse scattering radar system shows generally good agreement, although there are large differences in the measured durations of some meteor showers. Differential mass indices ( s ) of  ∼ 1.5–1.6 are measured for the Perseids (PER), Geminids (GEM) and Quadrantids (QUA) showers. The Orionids (ORI) show a much steeper mass index of 2.0, in agreement with other observations at small particle sizes, suggesting the Halleyid showers, in particular, are rich in very small meteoroids.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): Erica R. Jawin, James W. Head, David R. Marchant On Earth a transitional phase between glacial and interglacial periods is referred to as the paraglacial period. This period immediately postdates glacial retreat and is characterized by ice removal, glacial unloading, and the exposure of steep slopes and large sediment stores. These responses led to the development of a suite of morphologic units (e.g., talus cones, gullies, sackungen, and polygons) which, when observed together, are indicative of the paraglacial period. A similar period of transitional climate and deglaciation is identified on Mars in the Late Amazonian, characterized by the association of features in a glaciated 10.6 km diameter mid-latitude crater. This crater contains concentric crater fill (CCF) formed by debris-covered glaciers, as well as a suite of stratigraphically younger geomorphic units (e.g., spatulate depressions, washboard terrain, gullies, and polygonal terrain) that are all indicative of the local environmental response to deglaciation. These features are interpreted to represent a geologically recent martian paraglacial period within this crater. The morphology and relative stratigraphic relationships among these paraglacial features are described in order to assess the processes operating during deglaciation and to document the recent history of glaciation on Mars: spatulate depressions formed by the differential sublimation of pure glacial ice near the base of the crater wall; subsequently, due to the loss of basal support and steepened slopes, remnant ice on the crater wall began to flow downhill, and formed transverse crevasses that created washboard terrain. Continuous thermal cycling of sediment-mantled ice on crater walls created fractures that formed polygonal terrain. During this time and after, gullies formed by the transport of sediment downslope from crater rim alcoves. Analyses of modeled obliquity variations suggest that the paraglacial period could have operated within the last ∼5 Myr and may still be ongoing, suggesting that the current martian paraglacial period is much longer in duration than typical paraglacial periods on Earth. Understanding the nature and sequence of paraglacial activity can help to identify variations in climate in recent Mars history.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): Toshihiko Kadono, Takayuki Tanigawa, Kosuke Kurosawa, Takaya Okamoto, Takafumi Matsui, Hitoshi Mizutani We propose that the shape of impact fragments reflects their fragmentation mechanisms; the fragmentation process that generates smaller fragments (fractal crack bifurcation) produces the shapes frequently observed in the previous studies, and those that generate larger fragments (spallation, random tessellation, and geometrical effects) produce flatter fragments. Fragment shape analyses derived from hypervelocity impact experiments in a variety of mass distribution ranges qualitatively support this view.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-04-15
    Description: Publication date: 15 July 2018 Source: Icarus, Volume 309 Author(s): R.E. Johnson, B.U.R. Sundqvist Mass spectroscopy of bio-molecules by heavy ion induced sputtering, which became a practical laboratory procedure, was also suggested as a potential tool for spacecraft studies of targets of interest in astrobiology. With the planning of new missions to Europa, there is renewed interest in the possibility of detecting organic molecules that might have originated in its subsurface ocean and can be sputtered from its surface often intact by impacting energetic heavy ions trapped in Jupiter's magnetosphere. Here we review the laboratory data and modeling bearing on this issue. We then give estimates of the ejection into the gas-phase of trace organic species embedded in an ice matrix on Europa's surface and their possible detection during a flyby mission.
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...