Giant magnetoresistance of the La1−xAgxMnO3 polycrystalline inhomogeneous granular system
Tang, T. ; Cao, Q. Q. ; Gu, K. M. ; Xu, H. Y. ; Zhang, S. Y. ; Du, Y. W.
Woodbury, NY : American Institute of Physics (AIP)
Published 2000
Woodbury, NY : American Institute of Physics (AIP)
Published 2000
ISSN: |
1077-3118
|
---|---|
Source: |
AIP Digital Archive
|
Topics: |
Physics
|
Notes: |
A series of bulk polycrystalline La1−xAgxMnO3 samples with x ranging nominally from 0 to 0.5 were prepared by conventional solid-state reaction processing in air. X-ray diffraction patterns show that the samples contain a single perovskite phase when x≤0.25, and are composed of two phases (a magnetic perovskite phase and a nonmagnetic Ag-rich phase) for x〉0.25. It is found that, in this series of polycrystalline samples, maximum magnetoresistance occurs for x=0.30, i.e., for a composite of the two phases whose magnetoresistance ratio is about 25.5% at room temperature. The enhancement of the magnetoresistance effect in such an inhomogeneous granular system can be attributed to the spin-dependent scattering of electrons at the interface of the two phases. © 2000 American Institute of Physics.
|
Type of Medium: |
Electronic Resource
|
URL: |