A Reissner-Mindlin-type plate theory including the direct piezoelectric and the pyroelectric effect
ISSN: |
1619-6937
|
---|---|
Source: |
Springer Online Journal Archives 1860-2000
|
Topics: |
Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
Physics
|
Notes: |
Summary This paper is concerned with flexural vibrations of composite plates, where piezoelastic layers are used to generate distributed actuation or to perform distributed sensing of strains in the plate. Special emphasis is given to the coupling between mechanical, electrical and thermal fields due to the direct piezoelectric effect and the pyroelectric effect. Moderately thick plates are considered, where the influence of shear and rotatory inertia is taken into account according to the kinematic approximations introduced by Mindlin. An equivalent single-layer theory is thus derived for the composite plates. It is shown that coupling can be taken into account by means of effective stiffness parameters and an effective thermal loading. Polygonal plates with simply supported edges are treated in some detail, where quasi-static thermal bending as well as free, forced and actuated vibrations are studied.
|
Type of Medium: |
Electronic Resource
|
URL: |