A functionally gradient coating on carbon fibre for C/Al composites
ISSN: |
1573-4803
|
---|---|
Source: |
Springer Online Journal Archives 1860-2000
|
Topics: |
Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
|
Notes: |
Abstract A functionally gradient coating on carbon fibre for casting C/Al composites with an ultimate tensile strength up to 1250 MPa (V f=0.35) has been produced. The coating consisted of three layers: an inner pyrocarbon layer, an outer silicon layer and an intermediate gradient layer C/SiC/Si, and their optimum thicknesses were 0.1–0.15, 0.1 and 0.2 μm, respectively. This coating was fabricated by chemical vapour deposition and the C/Al composite was performed by pressure-regulated infiltration. Auger electron spectroscopy and X-ray diffraction analyses confirmed that the structure of the coating was in keeping with its design. The excellent ultimate tensile strength of the C/Al composite also proves that the functionally gradient coating has many functions, including wetting agent, diffusion and reaction barrier, releaser of residual thermal stresses, and tailor of interfacial shear strength. According to the mechanical, physical and chemical coordination between fibre and matrix, the functionally gradient coating can solve nearly all the problems of the interface during fabrication and service.
|
Type of Medium: |
Electronic Resource
|
URL: |