Autographa californica Multiple Nucleopolyhedrovirus ac75 Is Required for the Nuclear Egress of Nucleocapsids and Intranuclear Microvesicle Formation [Structure and Assembly]

Shi, A., Hu, Z., Zuo, Y., Wang, Y., Wu, W., Yuan, M., Yang, K.
The American Society for Microbiology (ASM)
Published 2018
Publication Date:
2018-01-31
Publisher:
The American Society for Microbiology (ASM)
Print ISSN:
0022-538X
Electronic ISSN:
1098-5514
Topics:
Medicine
Published by:
_version_ 1836398768910499840
autor Shi, A., Hu, Z., Zuo, Y., Wang, Y., Wu, W., Yuan, M., Yang, K.
beschreibung Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf75 ( ac75 ) is a highly conserved gene of unknown function. In this study, we constructed an ac75 knockout AcMNPV bacmid and investigated the role of ac75 in the baculovirus life cycle. The expression and distribution of the Ac75 protein were characterized, and its interaction with another viral protein was analyzed to further understand its function. Our data indicated that ac75 was required for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent budded virion (BV) formation, as well as occlusion-derived virion (ODV) envelopment and embedding of ODVs into polyhedra. Western blot analyses showed that two forms, of 18 and 15 kDa, of FLAG-tagged Ac75 protein were detected. Ac75 was associated with both nucleocapsid and envelope fractions of BVs but with only the nucleocapsid fraction of ODVs; the 18-kDa form was associated with only BVs, whereas the 15-kDa form was associated with both types of virion. Ac75 was localized predominantly in the intranuclear ring zone during infection and exhibited a nuclear rim distribution during the early phase of infection. A phase separation assay suggested that Ac75 was not an integral membrane protein. A coimmunoprecipitation assay revealed an interaction between Ac75 and the integral membrane protein Ac76, and bimolecular fluorescence complementation assays identified the sites of the interaction within the cytoplasm and at the nuclear membrane and ring zone in AcMNPV-infected cells. Our results have identified ac75 as a second gene that is required for both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles. IMPORTANCE During the baculovirus life cycle, the morphogenesis of both budded virions (BVs) and occlusion-derived virions (ODVs) is proposed to involve a budding process at the nuclear membrane, which occurs while nucleocapsids egress from the nucleus or when intranuclear microvesicles are produced. However, the exact mechanism of virion morphogenesis remains unknown. In this study, we identified ac75 as a second gene, in addition to ac93 , that is essential for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent BV formation, as well as ODV envelopment and embedding of ODVs into polyhedra. Ac75 is not an integral membrane protein. However, it interacts with an integral membrane protein (Ac76) and is associated with the nuclear membrane. These data enhance our understanding of the commonalities between nuclear egress of nucleocapsids and intranuclear microvesicle formation and may help to reveal insights into the mechanism of baculovirus virion morphogenesis.
citation_standardnr 6150221
datenlieferant ipn_articles
feed_id 2375
feed_publisher The American Society for Microbiology (ASM)
feed_publisher_url http://www.asm.org/
insertion_date 2018-01-31
journaleissn 1098-5514
journalissn 0022-538X
publikationsjahr_anzeige 2018
publikationsjahr_facette 2018
publikationsjahr_intervall 7984:2015-2019
publikationsjahr_sort 2018
publisher The American Society for Microbiology (ASM)
quelle Journal of Virology
relation http://jvi.asm.org/cgi/content/short/92/4/e01509-17?rss=1
search_space articles
shingle_author_1 Shi, A., Hu, Z., Zuo, Y., Wang, Y., Wu, W., Yuan, M., Yang, K.
shingle_author_2 Shi, A., Hu, Z., Zuo, Y., Wang, Y., Wu, W., Yuan, M., Yang, K.
shingle_author_3 Shi, A., Hu, Z., Zuo, Y., Wang, Y., Wu, W., Yuan, M., Yang, K.
shingle_author_4 Shi, A., Hu, Z., Zuo, Y., Wang, Y., Wu, W., Yuan, M., Yang, K.
shingle_catch_all_1 Autographa californica Multiple Nucleopolyhedrovirus ac75 Is Required for the Nuclear Egress of Nucleocapsids and Intranuclear Microvesicle Formation [Structure and Assembly]
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf75 ( ac75 ) is a highly conserved gene of unknown function. In this study, we constructed an ac75 knockout AcMNPV bacmid and investigated the role of ac75 in the baculovirus life cycle. The expression and distribution of the Ac75 protein were characterized, and its interaction with another viral protein was analyzed to further understand its function. Our data indicated that ac75 was required for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent budded virion (BV) formation, as well as occlusion-derived virion (ODV) envelopment and embedding of ODVs into polyhedra. Western blot analyses showed that two forms, of 18 and 15 kDa, of FLAG-tagged Ac75 protein were detected. Ac75 was associated with both nucleocapsid and envelope fractions of BVs but with only the nucleocapsid fraction of ODVs; the 18-kDa form was associated with only BVs, whereas the 15-kDa form was associated with both types of virion. Ac75 was localized predominantly in the intranuclear ring zone during infection and exhibited a nuclear rim distribution during the early phase of infection. A phase separation assay suggested that Ac75 was not an integral membrane protein. A coimmunoprecipitation assay revealed an interaction between Ac75 and the integral membrane protein Ac76, and bimolecular fluorescence complementation assays identified the sites of the interaction within the cytoplasm and at the nuclear membrane and ring zone in AcMNPV-infected cells. Our results have identified ac75 as a second gene that is required for both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles. IMPORTANCE During the baculovirus life cycle, the morphogenesis of both budded virions (BVs) and occlusion-derived virions (ODVs) is proposed to involve a budding process at the nuclear membrane, which occurs while nucleocapsids egress from the nucleus or when intranuclear microvesicles are produced. However, the exact mechanism of virion morphogenesis remains unknown. In this study, we identified ac75 as a second gene, in addition to ac93 , that is essential for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent BV formation, as well as ODV envelopment and embedding of ODVs into polyhedra. Ac75 is not an integral membrane protein. However, it interacts with an integral membrane protein (Ac76) and is associated with the nuclear membrane. These data enhance our understanding of the commonalities between nuclear egress of nucleocapsids and intranuclear microvesicle formation and may help to reveal insights into the mechanism of baculovirus virion morphogenesis.
Shi, A., Hu, Z., Zuo, Y., Wang, Y., Wu, W., Yuan, M., Yang, K.
The American Society for Microbiology (ASM)
0022-538X
0022538X
1098-5514
10985514
shingle_catch_all_2 Autographa californica Multiple Nucleopolyhedrovirus ac75 Is Required for the Nuclear Egress of Nucleocapsids and Intranuclear Microvesicle Formation [Structure and Assembly]
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf75 ( ac75 ) is a highly conserved gene of unknown function. In this study, we constructed an ac75 knockout AcMNPV bacmid and investigated the role of ac75 in the baculovirus life cycle. The expression and distribution of the Ac75 protein were characterized, and its interaction with another viral protein was analyzed to further understand its function. Our data indicated that ac75 was required for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent budded virion (BV) formation, as well as occlusion-derived virion (ODV) envelopment and embedding of ODVs into polyhedra. Western blot analyses showed that two forms, of 18 and 15 kDa, of FLAG-tagged Ac75 protein were detected. Ac75 was associated with both nucleocapsid and envelope fractions of BVs but with only the nucleocapsid fraction of ODVs; the 18-kDa form was associated with only BVs, whereas the 15-kDa form was associated with both types of virion. Ac75 was localized predominantly in the intranuclear ring zone during infection and exhibited a nuclear rim distribution during the early phase of infection. A phase separation assay suggested that Ac75 was not an integral membrane protein. A coimmunoprecipitation assay revealed an interaction between Ac75 and the integral membrane protein Ac76, and bimolecular fluorescence complementation assays identified the sites of the interaction within the cytoplasm and at the nuclear membrane and ring zone in AcMNPV-infected cells. Our results have identified ac75 as a second gene that is required for both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles. IMPORTANCE During the baculovirus life cycle, the morphogenesis of both budded virions (BVs) and occlusion-derived virions (ODVs) is proposed to involve a budding process at the nuclear membrane, which occurs while nucleocapsids egress from the nucleus or when intranuclear microvesicles are produced. However, the exact mechanism of virion morphogenesis remains unknown. In this study, we identified ac75 as a second gene, in addition to ac93 , that is essential for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent BV formation, as well as ODV envelopment and embedding of ODVs into polyhedra. Ac75 is not an integral membrane protein. However, it interacts with an integral membrane protein (Ac76) and is associated with the nuclear membrane. These data enhance our understanding of the commonalities between nuclear egress of nucleocapsids and intranuclear microvesicle formation and may help to reveal insights into the mechanism of baculovirus virion morphogenesis.
Shi, A., Hu, Z., Zuo, Y., Wang, Y., Wu, W., Yuan, M., Yang, K.
The American Society for Microbiology (ASM)
0022-538X
0022538X
1098-5514
10985514
shingle_catch_all_3 Autographa californica Multiple Nucleopolyhedrovirus ac75 Is Required for the Nuclear Egress of Nucleocapsids and Intranuclear Microvesicle Formation [Structure and Assembly]
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf75 ( ac75 ) is a highly conserved gene of unknown function. In this study, we constructed an ac75 knockout AcMNPV bacmid and investigated the role of ac75 in the baculovirus life cycle. The expression and distribution of the Ac75 protein were characterized, and its interaction with another viral protein was analyzed to further understand its function. Our data indicated that ac75 was required for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent budded virion (BV) formation, as well as occlusion-derived virion (ODV) envelopment and embedding of ODVs into polyhedra. Western blot analyses showed that two forms, of 18 and 15 kDa, of FLAG-tagged Ac75 protein were detected. Ac75 was associated with both nucleocapsid and envelope fractions of BVs but with only the nucleocapsid fraction of ODVs; the 18-kDa form was associated with only BVs, whereas the 15-kDa form was associated with both types of virion. Ac75 was localized predominantly in the intranuclear ring zone during infection and exhibited a nuclear rim distribution during the early phase of infection. A phase separation assay suggested that Ac75 was not an integral membrane protein. A coimmunoprecipitation assay revealed an interaction between Ac75 and the integral membrane protein Ac76, and bimolecular fluorescence complementation assays identified the sites of the interaction within the cytoplasm and at the nuclear membrane and ring zone in AcMNPV-infected cells. Our results have identified ac75 as a second gene that is required for both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles. IMPORTANCE During the baculovirus life cycle, the morphogenesis of both budded virions (BVs) and occlusion-derived virions (ODVs) is proposed to involve a budding process at the nuclear membrane, which occurs while nucleocapsids egress from the nucleus or when intranuclear microvesicles are produced. However, the exact mechanism of virion morphogenesis remains unknown. In this study, we identified ac75 as a second gene, in addition to ac93 , that is essential for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent BV formation, as well as ODV envelopment and embedding of ODVs into polyhedra. Ac75 is not an integral membrane protein. However, it interacts with an integral membrane protein (Ac76) and is associated with the nuclear membrane. These data enhance our understanding of the commonalities between nuclear egress of nucleocapsids and intranuclear microvesicle formation and may help to reveal insights into the mechanism of baculovirus virion morphogenesis.
Shi, A., Hu, Z., Zuo, Y., Wang, Y., Wu, W., Yuan, M., Yang, K.
The American Society for Microbiology (ASM)
0022-538X
0022538X
1098-5514
10985514
shingle_catch_all_4 Autographa californica Multiple Nucleopolyhedrovirus ac75 Is Required for the Nuclear Egress of Nucleocapsids and Intranuclear Microvesicle Formation [Structure and Assembly]
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf75 ( ac75 ) is a highly conserved gene of unknown function. In this study, we constructed an ac75 knockout AcMNPV bacmid and investigated the role of ac75 in the baculovirus life cycle. The expression and distribution of the Ac75 protein were characterized, and its interaction with another viral protein was analyzed to further understand its function. Our data indicated that ac75 was required for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent budded virion (BV) formation, as well as occlusion-derived virion (ODV) envelopment and embedding of ODVs into polyhedra. Western blot analyses showed that two forms, of 18 and 15 kDa, of FLAG-tagged Ac75 protein were detected. Ac75 was associated with both nucleocapsid and envelope fractions of BVs but with only the nucleocapsid fraction of ODVs; the 18-kDa form was associated with only BVs, whereas the 15-kDa form was associated with both types of virion. Ac75 was localized predominantly in the intranuclear ring zone during infection and exhibited a nuclear rim distribution during the early phase of infection. A phase separation assay suggested that Ac75 was not an integral membrane protein. A coimmunoprecipitation assay revealed an interaction between Ac75 and the integral membrane protein Ac76, and bimolecular fluorescence complementation assays identified the sites of the interaction within the cytoplasm and at the nuclear membrane and ring zone in AcMNPV-infected cells. Our results have identified ac75 as a second gene that is required for both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles. IMPORTANCE During the baculovirus life cycle, the morphogenesis of both budded virions (BVs) and occlusion-derived virions (ODVs) is proposed to involve a budding process at the nuclear membrane, which occurs while nucleocapsids egress from the nucleus or when intranuclear microvesicles are produced. However, the exact mechanism of virion morphogenesis remains unknown. In this study, we identified ac75 as a second gene, in addition to ac93 , that is essential for the nuclear egress of nucleocapsids, intranuclear microvesicle formation, and subsequent BV formation, as well as ODV envelopment and embedding of ODVs into polyhedra. Ac75 is not an integral membrane protein. However, it interacts with an integral membrane protein (Ac76) and is associated with the nuclear membrane. These data enhance our understanding of the commonalities between nuclear egress of nucleocapsids and intranuclear microvesicle formation and may help to reveal insights into the mechanism of baculovirus virion morphogenesis.
Shi, A., Hu, Z., Zuo, Y., Wang, Y., Wu, W., Yuan, M., Yang, K.
The American Society for Microbiology (ASM)
0022-538X
0022538X
1098-5514
10985514
shingle_title_1 Autographa californica Multiple Nucleopolyhedrovirus ac75 Is Required for the Nuclear Egress of Nucleocapsids and Intranuclear Microvesicle Formation [Structure and Assembly]
shingle_title_2 Autographa californica Multiple Nucleopolyhedrovirus ac75 Is Required for the Nuclear Egress of Nucleocapsids and Intranuclear Microvesicle Formation [Structure and Assembly]
shingle_title_3 Autographa californica Multiple Nucleopolyhedrovirus ac75 Is Required for the Nuclear Egress of Nucleocapsids and Intranuclear Microvesicle Formation [Structure and Assembly]
shingle_title_4 Autographa californica Multiple Nucleopolyhedrovirus ac75 Is Required for the Nuclear Egress of Nucleocapsids and Intranuclear Microvesicle Formation [Structure and Assembly]
timestamp 2025-06-30T23:32:20.523Z
titel Autographa californica Multiple Nucleopolyhedrovirus ac75 Is Required for the Nuclear Egress of Nucleocapsids and Intranuclear Microvesicle Formation [Structure and Assembly]
titel_suche Autographa californica Multiple Nucleopolyhedrovirus ac75 Is Required for the Nuclear Egress of Nucleocapsids and Intranuclear Microvesicle Formation [Structure and Assembly]
topic WW-YZ
uid ipn_articles_6150221