Search Results - (Author, Cooperation:T. Kolb)
-
1X. Lee ; M. L. Goulden ; D. Y. Hollinger ; A. Barr ; T. A. Black ; G. Bohrer ; R. Bracho ; B. Drake ; A. Goldstein ; L. Gu ; G. Katul ; T. Kolb ; B. E. Law ; H. Margolis ; T. Meyers ; R. Monson ; W. Munger ; R. Oren ; U. K. Paw ; A. D. Richardson ; H. P. Schmid ; R. Staebler ; S. Wofsy ; L. Zhao
Nature Publishing Group (NPG)
Published 2011Staff ViewPublication Date: 2011-11-19Publisher: Nature Publishing Group (NPG)Print ISSN: 0028-0836Electronic ISSN: 1476-4687Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsKeywords: Air/analysis ; *Altitude ; Atmosphere/analysis ; Biophysical Processes ; Canada ; Climate ; Conservation of Natural Resources ; Forestry ; Seasons ; *Temperature ; Trees/*growth & development ; United StatesPublished by: -
2Staff View
ISSN: 1365-3040Source: Blackwell Publishing Journal Backfiles 1879-2005Topics: BiologyNotes: We investigated the physiological and growth responses of native (Populus fremontii S. Wats. and Salix gooddingii Ball) and exotic (Tamarix chinensis Lour.) riparian trees to ground water availability at the free-flowing Hassayampa River, Arizona, during dry (1997) and wet (1998) years. In the drier year, all species experienced considerable water stress, as evidenced by low shoot water potentials, low leaf gas exchange rates and large amounts of canopy dieback. These parameters were significantly related to depth of ground water (DGW) in the native species, but not in T. chinensis, in 1997. Canopy dieback was greater in the native species than in T. chinensis when ground water was deep in 1997, and dieback increased rapidly at DGW 〉 2·5–3·0 m for the native species. Analysis of combined data from wet and dry years for T. chinensis tentatively suggests a similar physiological sensitivity to water availability and a similar DGW threshold for canopy dieback. In 1998, shoot water potential and leaf gas exchange rates were higher and canopy dieback was lower for all species because of increased water availability. However, T. chinensis showed a much larger increase in leaf gas exchange rates in the wet year than the native species. High leaf gas exchange rates, growth when water is abundant, drought tolerance and the maintenance of a viable canopy under dry conditions are characteristics that help explain the ability of T. chinensis to thrive in riparian ecosystems in the south-western United States.Type of Medium: Electronic ResourceURL: -
3Staff View
ISSN: 0009-286XKeywords: Chemistry ; Polymer and Materials ScienceSource: Wiley InterScience Backfile Collection 1832-2000Topics: Chemistry and PharmacologyProcess Engineering, Biotechnology, Nutrition TechnologyAdditional Material: 3 Ill.Type of Medium: Electronic ResourceURL: -
4Staff View
ISSN: 0009-286XKeywords: Chemistry ; Polymer and Materials ScienceSource: Wiley InterScience Backfile Collection 1832-2000Topics: Chemistry and PharmacologyProcess Engineering, Biotechnology, Nutrition TechnologyType of Medium: Electronic ResourceURL: -
5Straßburger, R. ; Kolb, T. ; Mantel, R. ; Seifert, H. ; Dorn, I. H.
Weinheim : Wiley-Blackwell
Published 1993Staff ViewISSN: 0009-286XKeywords: Chemistry ; Polymer and Materials ScienceSource: Wiley InterScience Backfile Collection 1832-2000Topics: Chemistry and PharmacologyProcess Engineering, Biotechnology, Nutrition TechnologyType of Medium: Electronic ResourceURL: