Search Results - (Author, Cooperation:T. Bloom)

Showing 1 - 8 results of 8, query time: 0.14s Refine Results
  1. 1
    K. Lindblad-Toh ; M. Garber ; O. Zuk ; M. F. Lin ; B. J. Parker ; S. Washietl ; P. Kheradpour ; J. Ernst ; G. Jordan ; E. Mauceli ; L. D. Ward ; C. B. Lowe ; A. K. Holloway ; M. Clamp ; S. Gnerre ; J. Alfoldi ; K. Beal ; J. Chang ; H. Clawson ; J. Cuff ; F. Di Palma ; S. Fitzgerald ; P. Flicek ; M. Guttman ; M. J. Hubisz ; D. B. Jaffe ; I. Jungreis ; W. J. Kent ; D. Kostka ; M. Lara ; A. L. Martins ; T. Massingham ; I. Moltke ; B. J. Raney ; M. D. Rasmussen ; J. Robinson ; A. Stark ; A. J. Vilella ; J. Wen ; X. Xie ; M. C. Zody ; J. Baldwin ; T. Bloom ; C. W. Chin ; D. Heiman ; R. Nicol ; C. Nusbaum ; S. Young ; J. Wilkinson ; K. C. Worley ; C. L. Kovar ; D. M. Muzny ; R. A. Gibbs ; A. Cree ; H. H. Dihn ; G. Fowler ; S. Jhangiani ; V. Joshi ; S. Lee ; L. R. Lewis ; L. V. Nazareth ; G. Okwuonu ; J. Santibanez ; W. C. Warren ; E. R. Mardis ; G. M. Weinstock ; R. K. Wilson ; K. Delehaunty ; D. Dooling ; C. Fronik ; L. Fulton ; B. Fulton ; T. Graves ; P. Minx ; E. Sodergren ; E. Birney ; E. H. Margulies ; J. Herrero ; E. D. Green ; D. Haussler ; A. Siepel ; N. Goldman ; K. S. Pollard ; J. S. Pedersen ; E. S. Lander ; M. Kellis
    Nature Publishing Group (NPG)
    Published 2011
    Staff View
    Publication Date:
    2011-10-14
    Publisher:
    Nature Publishing Group (NPG)
    Print ISSN:
    0028-0836
    Electronic ISSN:
    1476-4687
    Topics:
    Biology
    Chemistry and Pharmacology
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    Animals ; Disease ; *Evolution, Molecular ; Exons/genetics ; Genome/*genetics ; Genome, Human/*genetics ; Genomics ; Health ; Humans ; Mammals/*genetics ; Molecular Sequence Annotation ; Phylogeny ; RNA/classification/genetics ; Selection, Genetic/genetics ; Sequence Alignment ; Sequence Analysis, DNA
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  2. 2
    Staff View
    Publication Date:
    2012-04-07
    Publisher:
    Nature Publishing Group (NPG)
    Print ISSN:
    0028-0836
    Electronic ISSN:
    1476-4687
    Topics:
    Biology
    Chemistry and Pharmacology
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    Adaptation, Physiological/*genetics ; Alaska ; Animals ; Aquatic Organisms/genetics ; *Biological Evolution ; Chromosome Inversion/genetics ; Chromosomes/genetics ; Conserved Sequence/genetics ; Ecotype ; Female ; Fresh Water ; Genetic Variation/genetics ; Genome/*genetics ; Genomics ; Molecular Sequence Data ; Seawater ; Sequence Analysis, DNA ; Smegmamorpha/*genetics
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  3. 3
  4. 4
    Bloom, T. ; -P. Calvi, J.
    Springer
    Published 1997
    Staff View
    ISSN:
    1432-0940
    Keywords:
    Key words and phrases: Logarithmic potential, $\C$-Convex, Kergin interpolation. AMS Classification: 32A05, 32A10, 41A63.
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mathematics
    Notes:
    Abstract. Let D be a C-convex domain in C n . Let $\{A_{dj}\}, \ j = 0,\ldots,d$ , and d = 0,1,2, ..., be an array of points in a compact set $K \subset D$ . Let f be holomorphic on $\overline D$ and let K d (f) denote the Kergin interpolating polynomial to f at A d0 ,... , A dd . We give conditions on the array and D such that $\lim_{d\to\infty} \|K_d (f) - f\|_K = 0$ . The conditions are, in an appropriate sense, optimal. This result generalizes classical one variable results on the convergence of Lagrange—Hermite interpolants of analytic functions.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  5. 5
    Bloom, T. ; Lubinsky, D. S. ; Stahl, H.
    Springer
    Published 1993
    Staff View
    ISSN:
    1432-0940
    Keywords:
    Primary 41A55 ; 65D30 ; 65D32 ; Secondary 42C05 ; Integration rules ; Interpolatory integration rules ; Convergence ; Distribution of points ; Weak convergence ; Potential theory
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mathematics
    Notes:
    Abstract Suppose that, forn≥1, $$I_n [f]: = \sum\limits_{j = 1}^n {w_{jn} f(x_{jn} )} $$ is aninterpolatory integration rule of numerical integration, that is, $$I_n [f]: = \int\limits_{ - 1}^1 {P(x)dx,} degree(P)〈 n.$$ Suppose, furthermore, that, for each continuousf:[−1, 1]→R, $$\mathop {\lim }\limits_{n \to \infty } I_n [f] = \int\limits_{ - 1}^1 {f(x)dx.} $$ What can then be said about thedistribution of the points $$\{ x_{jn} \} _{1 \leqslant j \leqslant n} $$ n→∞? In all the classical examples they havearcsin distribution. More precisely, if $$\mu _n : = \frac{1}{n}\sum\limits_{j = 1}^n {\delta _{x_{jn} } } $$ is the unit measure assigning mass 1/n to each pointx jn, then, asn→∞ $$d\mu _n (x)\mathop \to \limits^* \upsilon (x)dx: = \frac{1}{\pi }(\arcsin x)'dx = \frac{{dx}}{{\pi (1 - x^2 )^{1/2} }}.$$ Surprisingly enough, this isnot the general case. We show that the set of all possible limit distributions has the form 1/2(v(x) dx+dv(x)), wherev is an arbitrary probability measure on [−1, 1]. Moreover, given any suchv, we may find rulesI n,n≥1, with positive weights, yielding the limit distribution 1/2v(x) dx+dv(x)). We also consider generalizations when the quadratures have precision other thann−1, and when we place a weight σ in our integral.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  6. 6
    Bloom, T. ; Lubinsky, D. S. ; Stahl, H.
    Springer
    Published 1993
    Staff View
    ISSN:
    1432-0940
    Keywords:
    Primary 41A55 ; 65D30 ; 65D32 ; Secondary 42C05 ; Integration rules on (−∞, ∞) ; Interpolatory integration rules ; Convergence ; Distribution of points ; Weak convergence ; Potential theory ; Gauss quadrature ; Nevai-Ullmann distribution
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mathematics
    Notes:
    Abstract Letw be a “nice” positive weight function on (−∞, ∞), such asw(x)=exp(−⋎x⋎α) α〉1. Suppose that, forn≥1, $$I_n [f]: = \sum\limits_{j = 1}^n {w_{jn} } f(x_{jn} )$$ is aninterpolatory integration rule for the weightw: that is for polynomialsP of degree ≤n-1, $$I_n [P]: = \int\limits_{ - \infty }^\infty {P(x)w(x)dx.} $$ Moreover, suppose that the sequence of rules {I n} n=1 t8 isconvergent: $$\mathop {\lim }\limits_{n \to \infty } I_n [f] = \int\limits_{ - \infty }^\infty {f(x)w(x)dx} $$ for all continuousf:R→R satisfying suitable integrability conditions. What then can we say about thedistribution of the points {x jn} j=1 n ,n≥1? Roughly speaking, the conclusion of this paper is thathalf the points are distributed like zeros of orthogonal polynomials forw, and half may bearbitrarily distributed. Thus half the points haveNevai-Ullmann distribution of order α, and the rest are arbitrarily distributed. We also describe the possible distributions of the integration points, when the ruleI n has precision other thann-1.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  7. 7
    Bloom, T. ; Lubinsky, D. S. ; Stahl, H.
    Springer
    Published 1992
    Staff View
    ISSN:
    1572-9265
    Keywords:
    Interpolatory integration rules ; convergent integration rules ; orthogonal polynomials ; varying weights ; equilibrium distribution
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Computer Science
    Mathematics
    Notes:
    Abstract We investigate which types of asymptotic distributions can be generated by the knots of convergent sequences of interpolatory integration rules. It will turn out that the class of all possible distributions can be described exactly, and it will be shown that the zeros of polynomials that are orthogonal with respect to varying weight functions are good candidates for knots of integration rules with a prescribed asymptotic distribution.
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses
  8. 8
    Staff View
    ISSN:
    1573-4811
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses