Search Results - (Author, Cooperation:T. Bloom)
-
1K. Lindblad-Toh ; M. Garber ; O. Zuk ; M. F. Lin ; B. J. Parker ; S. Washietl ; P. Kheradpour ; J. Ernst ; G. Jordan ; E. Mauceli ; L. D. Ward ; C. B. Lowe ; A. K. Holloway ; M. Clamp ; S. Gnerre ; J. Alfoldi ; K. Beal ; J. Chang ; H. Clawson ; J. Cuff ; F. Di Palma ; S. Fitzgerald ; P. Flicek ; M. Guttman ; M. J. Hubisz ; D. B. Jaffe ; I. Jungreis ; W. J. Kent ; D. Kostka ; M. Lara ; A. L. Martins ; T. Massingham ; I. Moltke ; B. J. Raney ; M. D. Rasmussen ; J. Robinson ; A. Stark ; A. J. Vilella ; J. Wen ; X. Xie ; M. C. Zody ; J. Baldwin ; T. Bloom ; C. W. Chin ; D. Heiman ; R. Nicol ; C. Nusbaum ; S. Young ; J. Wilkinson ; K. C. Worley ; C. L. Kovar ; D. M. Muzny ; R. A. Gibbs ; A. Cree ; H. H. Dihn ; G. Fowler ; S. Jhangiani ; V. Joshi ; S. Lee ; L. R. Lewis ; L. V. Nazareth ; G. Okwuonu ; J. Santibanez ; W. C. Warren ; E. R. Mardis ; G. M. Weinstock ; R. K. Wilson ; K. Delehaunty ; D. Dooling ; C. Fronik ; L. Fulton ; B. Fulton ; T. Graves ; P. Minx ; E. Sodergren ; E. Birney ; E. H. Margulies ; J. Herrero ; E. D. Green ; D. Haussler ; A. Siepel ; N. Goldman ; K. S. Pollard ; J. S. Pedersen ; E. S. Lander ; M. Kellis
Nature Publishing Group (NPG)
Published 2011Staff ViewPublication Date: 2011-10-14Publisher: Nature Publishing Group (NPG)Print ISSN: 0028-0836Electronic ISSN: 1476-4687Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsKeywords: Animals ; Disease ; *Evolution, Molecular ; Exons/genetics ; Genome/*genetics ; Genome, Human/*genetics ; Genomics ; Health ; Humans ; Mammals/*genetics ; Molecular Sequence Annotation ; Phylogeny ; RNA/classification/genetics ; Selection, Genetic/genetics ; Sequence Alignment ; Sequence Analysis, DNAPublished by: -
2F. C. Jones ; M. G. Grabherr ; Y. F. Chan ; P. Russell ; E. Mauceli ; J. Johnson ; R. Swofford ; M. Pirun ; M. C. Zody ; S. White ; E. Birney ; S. Searle ; J. Schmutz ; J. Grimwood ; M. C. Dickson ; R. M. Myers ; C. T. Miller ; B. R. Summers ; A. K. Knecht ; S. D. Brady ; H. Zhang ; A. A. Pollen ; T. Howes ; C. Amemiya ; J. Baldwin ; T. Bloom ; D. B. Jaffe ; R. Nicol ; J. Wilkinson ; E. S. Lander ; F. Di Palma ; K. Lindblad-Toh ; D. M. Kingsley
Nature Publishing Group (NPG)
Published 2012Staff ViewPublication Date: 2012-04-07Publisher: Nature Publishing Group (NPG)Print ISSN: 0028-0836Electronic ISSN: 1476-4687Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsKeywords: Adaptation, Physiological/*genetics ; Alaska ; Animals ; Aquatic Organisms/genetics ; *Biological Evolution ; Chromosome Inversion/genetics ; Chromosomes/genetics ; Conserved Sequence/genetics ; Ecotype ; Female ; Fresh Water ; Genetic Variation/genetics ; Genome/*genetics ; Genomics ; Molecular Sequence Data ; Seawater ; Sequence Analysis, DNA ; Smegmamorpha/*geneticsPublished by: -
3Camblin, A. J., Pace, E. A., Adams, S., Curley, M. D., Rimkunas, V., Nie, L., Tan, G., Bloom, T., Iadevaia, S., Baum, J., Minx, C., Czibere, A., Louis, C. U., Drummond, D. C., Nielsen, U. B., Schoeberl, B., Pipas, J. M., Straubinger, R. M., Askoxylakis, V., Lugovskoy, A. A.
The American Association for Cancer Research (AACR)
Published 2018Staff ViewPublication Date: 2018-06-16Publisher: The American Association for Cancer Research (AACR)Print ISSN: 1078-0432Electronic ISSN: 1557-3265Topics: MedicinePublished by: -
4Staff View
ISSN: 1432-0940Keywords: Key words and phrases: Logarithmic potential, $\C$-Convex, Kergin interpolation. AMS Classification: 32A05, 32A10, 41A63.Source: Springer Online Journal Archives 1860-2000Topics: MathematicsNotes: Abstract. Let D be a C-convex domain in C n . Let $\{A_{dj}\}, \ j = 0,\ldots,d$ , and d = 0,1,2, ..., be an array of points in a compact set $K \subset D$ . Let f be holomorphic on $\overline D$ and let K d (f) denote the Kergin interpolating polynomial to f at A d0 ,... , A dd . We give conditions on the array and D such that $\lim_{d\to\infty} \|K_d (f) - f\|_K = 0$ . The conditions are, in an appropriate sense, optimal. This result generalizes classical one variable results on the convergence of Lagrange—Hermite interpolants of analytic functions.Type of Medium: Electronic ResourceURL: -
5Staff View
ISSN: 1432-0940Keywords: Primary 41A55 ; 65D30 ; 65D32 ; Secondary 42C05 ; Integration rules ; Interpolatory integration rules ; Convergence ; Distribution of points ; Weak convergence ; Potential theorySource: Springer Online Journal Archives 1860-2000Topics: MathematicsNotes: Abstract Suppose that, forn≥1, $$I_n [f]: = \sum\limits_{j = 1}^n {w_{jn} f(x_{jn} )} $$ is aninterpolatory integration rule of numerical integration, that is, $$I_n [f]: = \int\limits_{ - 1}^1 {P(x)dx,} degree(P)〈 n.$$ Suppose, furthermore, that, for each continuousf:[−1, 1]→R, $$\mathop {\lim }\limits_{n \to \infty } I_n [f] = \int\limits_{ - 1}^1 {f(x)dx.} $$ What can then be said about thedistribution of the points $$\{ x_{jn} \} _{1 \leqslant j \leqslant n} $$ n→∞? In all the classical examples they havearcsin distribution. More precisely, if $$\mu _n : = \frac{1}{n}\sum\limits_{j = 1}^n {\delta _{x_{jn} } } $$ is the unit measure assigning mass 1/n to each pointx jn, then, asn→∞ $$d\mu _n (x)\mathop \to \limits^* \upsilon (x)dx: = \frac{1}{\pi }(\arcsin x)'dx = \frac{{dx}}{{\pi (1 - x^2 )^{1/2} }}.$$ Surprisingly enough, this isnot the general case. We show that the set of all possible limit distributions has the form 1/2(v(x) dx+dv(x)), wherev is an arbitrary probability measure on [−1, 1]. Moreover, given any suchv, we may find rulesI n,n≥1, with positive weights, yielding the limit distribution 1/2v(x) dx+dv(x)). We also consider generalizations when the quadratures have precision other thann−1, and when we place a weight σ in our integral.Type of Medium: Electronic ResourceURL: -
6Staff View
ISSN: 1432-0940Keywords: Primary 41A55 ; 65D30 ; 65D32 ; Secondary 42C05 ; Integration rules on (−∞, ∞) ; Interpolatory integration rules ; Convergence ; Distribution of points ; Weak convergence ; Potential theory ; Gauss quadrature ; Nevai-Ullmann distributionSource: Springer Online Journal Archives 1860-2000Topics: MathematicsNotes: Abstract Letw be a “nice” positive weight function on (−∞, ∞), such asw(x)=exp(−⋎x⋎α) α〉1. Suppose that, forn≥1, $$I_n [f]: = \sum\limits_{j = 1}^n {w_{jn} } f(x_{jn} )$$ is aninterpolatory integration rule for the weightw: that is for polynomialsP of degree ≤n-1, $$I_n [P]: = \int\limits_{ - \infty }^\infty {P(x)w(x)dx.} $$ Moreover, suppose that the sequence of rules {I n} n=1 t8 isconvergent: $$\mathop {\lim }\limits_{n \to \infty } I_n [f] = \int\limits_{ - \infty }^\infty {f(x)w(x)dx} $$ for all continuousf:R→R satisfying suitable integrability conditions. What then can we say about thedistribution of the points {x jn} j=1 n ,n≥1? Roughly speaking, the conclusion of this paper is thathalf the points are distributed like zeros of orthogonal polynomials forw, and half may bearbitrarily distributed. Thus half the points haveNevai-Ullmann distribution of order α, and the rest are arbitrarily distributed. We also describe the possible distributions of the integration points, when the ruleI n has precision other thann-1.Type of Medium: Electronic ResourceURL: -
7Staff View
ISSN: 1572-9265Keywords: Interpolatory integration rules ; convergent integration rules ; orthogonal polynomials ; varying weights ; equilibrium distributionSource: Springer Online Journal Archives 1860-2000Topics: Computer ScienceMathematicsNotes: Abstract We investigate which types of asymptotic distributions can be generated by the knots of convergent sequences of interpolatory integration rules. It will turn out that the class of all possible distributions can be described exactly, and it will be shown that the zeros of polynomials that are orthogonal with respect to varying weight functions are good candidates for knots of integration rules with a prescribed asymptotic distribution.Type of Medium: Electronic ResourceURL: -
8Staff View
ISSN: 1573-4811Source: Springer Online Journal Archives 1860-2000Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision MechanicsType of Medium: Electronic ResourceURL: