Search Results - (Author, Cooperation:L. Pachter)

Showing 1 - 2 results of 2, query time: 0.11s Refine Results
  1. 1
    N. K. Hanchate ; K. Kondoh ; Z. Lu ; D. Kuang ; X. Ye ; X. Qiu ; L. Pachter ; C. Trapnell ; L. B. Buck
    American Association for the Advancement of Science (AAAS)
    Published 2015
    Staff View
    Publication Date:
    2015-11-07
    Publisher:
    American Association for the Advancement of Science (AAAS)
    Print ISSN:
    0036-8075
    Electronic ISSN:
    1095-9203
    Topics:
    Biology
    Chemistry and Pharmacology
    Computer Science
    Medicine
    Natural Sciences in General
    Physics
    Keywords:
    Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics ; Cyclic Nucleotide-Gated Cation Channels/genetics ; *Gene Expression Regulation, Developmental ; Genetic Loci ; Genetic Markers ; Mice ; Mice, Inbred C57BL ; Neural Stem Cells/*metabolism ; Neurogenesis/*genetics ; Olfactory Mucosa/innervation ; Olfactory Receptor Neurons/*metabolism ; Receptors, Odorant/*genetics ; Sequence Analysis, RNA ; Single-Cell Analysis ; Smell/*genetics ; Transcriptome
    Published by:
    Latest Papers from Table of Contents or Articles in Press
  2. 2
    Kleitman, D. ; Pachter, L.
    Springer
    Published 1998
    Staff View
    ISSN:
    1432-0444
    Source:
    Springer Online Journal Archives 1860-2000
    Topics:
    Computer Science
    Mathematics
    Notes:
    Abstract. Let g(n) denote the least value such that any g(n) points in the plane in general position contain the vertices of a convex n -gon. In 1935, Erdős and Szekeres showed that g(n) exists, and they obtained the bounds $$2^{n-2}+1 \leq g(n) \leq {{2n-4} \choose {n-2}} +1. $$ Chung and Graham have recently improved the upper bound by 1; the first improvement since the original Erdős—Szekeres paper. We show that $$g(n) \leq {{2n-4} \choose {n-2}}+7-2n.$$ 〈lsiheader〉 〈onlinepub〉26 June, 1998 〈editor〉Editors-in-Chief: &lsilt;a href=../edboard.html#chiefs&lsigt;Jacob E. Goodman, Richard Pollack&lsilt;/a&lsigt; 〈pdfname〉19n3p405.pdf 〈pdfexist〉yes 〈htmlexist〉no 〈htmlfexist〉no 〈texexist〉yes 〈sectionname〉 〈/lsiheader〉
    Type of Medium:
    Electronic Resource
    URL:
    Articles: DFG German National Licenses