Search Results - (Author, Cooperation:E. McCullough)
-
1Joseph Han, Catherine Lachance, M. Daniel Ricketts, Cheryl E. McCullough, Morgan Gerace, Ben E. Black, Jacques Cote, Ronen Marmorstein
The American Society for Biochemistry and Molecular Biology (ASBMB)
Published 2018Staff ViewPublication Date: 2018-03-24Publisher: The American Society for Biochemistry and Molecular Biology (ASBMB)Print ISSN: 0021-9258Electronic ISSN: 1083-351XTopics: BiologyChemistry and PharmacologyPublished by: -
2C. R. Webster ; P. R. Mahaffy ; G. J. Flesch ; P. B. Niles ; J. H. Jones ; L. A. Leshin ; S. K. Atreya ; J. C. Stern ; L. E. Christensen ; T. Owen ; H. Franz ; R. O. Pepin ; A. Steele ; C. Achilles ; C. Agard ; J. A. Alves Verdasca ; R. Anderson ; D. Archer ; C. Armiens-Aparicio ; R. Arvidson ; E. Atlaskin ; A. Aubrey ; B. Baker ; M. Baker ; T. Balic-Zunic ; D. Baratoux ; J. Baroukh ; B. Barraclough ; K. Bean ; L. Beegle ; A. Behar ; J. Bell ; S. Bender ; M. Benna ; J. Bentz ; G. Berger ; J. Berger ; D. Berman ; D. Bish ; D. F. Blake ; J. J. Blanco Avalos ; D. Blaney ; J. Blank ; H. Blau ; L. Bleacher ; E. Boehm ; O. Botta ; S. Bottcher ; T. Boucher ; H. Bower ; N. Boyd ; B. Boynton ; E. Breves ; J. Bridges ; N. Bridges ; W. Brinckerhoff ; D. Brinza ; T. Bristow ; C. Brunet ; A. Brunner ; W. Brunner ; A. Buch ; M. Bullock ; S. Burmeister ; M. Cabane ; F. Calef ; J. Cameron ; J. Campbell ; B. Cantor ; M. Caplinger ; J. Caride Rodriguez ; M. Carmosino ; I. Carrasco Blazquez ; A. Charpentier ; S. Chipera ; D. Choi ; B. Clark ; S. Clegg ; T. Cleghorn ; E. Cloutis ; G. Cody ; P. Coll ; P. Conrad ; D. Coscia ; A. Cousin ; D. Cremers ; J. Crisp ; A. Cros ; F. Cucinotta ; C. d'Uston ; S. Davis ; M. Day ; M. de la Torre Juarez ; L. DeFlores ; D. DeLapp ; J. DeMarines ; D. DesMarais ; W. Dietrich ; R. Dingler ; C. Donny ; B. Downs ; D. Drake ; G. Dromart ; A. Dupont ; B. Duston ; J. Dworkin ; M. D. Dyar ; L. Edgar ; K. Edgett ; C. Edwards ; L. Edwards ; B. Ehlmann ; B. Ehresmann ; J. Eigenbrode ; B. Elliott ; H. Elliott ; R. Ewing ; C. Fabre ; A. Fairen ; K. Farley ; J. Farmer ; C. Fassett ; L. Favot ; D. Fay ; F. Fedosov ; J. Feldman ; S. Feldman ; M. Fisk ; M. Fitzgibbon ; M. Floyd ; L. Fluckiger ; O. Forni ; A. Fraeman ; R. Francis ; P. Francois ; C. Freissinet ; K. L. French ; J. Frydenvang ; A. Gaboriaud ; M. Gailhanou ; J. Garvin ; O. Gasnault ; C. Geffroy ; R. Gellert ; M. Genzer ; D. Glavin ; A. Godber ; F. Goesmann ; W. Goetz ; D. Golovin ; F. Gomez Gomez ; J. Gomez-Elvira ; B. Gondet ; S. Gordon ; S. Gorevan ; J. Grant ; J. Griffes ; D. Grinspoon ; J. Grotzinger ; P. Guillemot ; J. Guo ; S. Gupta ; S. Guzewich ; R. Haberle ; D. Halleaux ; B. Hallet ; V. Hamilton ; C. Hardgrove ; D. Harker ; D. Harpold ; A. M. Harri ; K. Harshman ; D. Hassler ; H. Haukka ; A. Hayes ; K. Herkenhoff ; P. Herrera ; S. Hettrich ; E. Heydari ; V. Hipkin ; T. Hoehler ; J. Hollingsworth ; J. Hudgins ; W. Huntress ; J. Hurowitz ; S. Hviid ; K. Iagnemma ; S. Indyk ; G. Israel ; R. Jackson ; S. Jacob ; B. Jakosky ; E. Jensen ; J. K. Jensen ; J. Johnson ; M. Johnson ; S. Johnstone ; A. Jones ; J. Joseph ; I. Jun ; L. Kah ; H. Kahanpaa ; M. Kahre ; N. Karpushkina ; W. Kasprzak ; J. Kauhanen ; L. Keely ; O. Kemppinen ; D. Keymeulen ; M. H. Kim ; K. Kinch ; P. King ; L. Kirkland ; G. Kocurek ; A. Koefoed ; J. Kohler ; O. Kortmann ; A. Kozyrev ; J. Krezoski ; D. Krysak ; R. Kuzmin ; J. L. Lacour ; V. Lafaille ; Y. Langevin ; N. Lanza ; J. Lasue ; S. Le Mouelic ; E. M. Lee ; Q. M. Lee ; D. Lees ; M. Lefavor ; M. Lemmon ; A. Lepinette Malvitte ; R. Leveille ; E. Lewin-Carpintier ; K. Lewis ; S. Li ; L. Lipkaman ; C. Little ; M. Litvak ; E. Lorigny ; G. Lugmair ; A. Lundberg ; E. Lyness ; M. Madsen ; J. Maki ; A. Malakhov ; C. Malespin ; M. Malin ; N. Mangold ; G. Manhes ; H. Manning ; G. Marchand ; M. Marin Jimenez ; C. Martin Garcia ; D. Martin ; M. Martin ; J. Martinez-Frias ; J. Martin-Soler ; F. J. Martin-Torres ; P. Mauchien ; S. Maurice ; A. McAdam ; E. McCartney ; T. McConnochie ; E. McCullough ; I. McEwan ; C. McKay ; S. McLennan ; S. McNair ; N. Melikechi ; P. Y. Meslin ; M. Meyer ; A. Mezzacappa ; H. Miller ; K. Miller ; R. Milliken ; D. Ming ; M. Minitti ; M. Mischna ; I. Mitrofanov ; J. Moersch ; M. Mokrousov ; A. Molina Jurado ; J. Moores ; L. Mora-Sotomayor ; J. M. Morookian ; R. Morris ; S. Morrison ; R. Mueller-Mellin ; J. P. Muller ; G. Munoz Caro ; M. Nachon ; S. Navarro Lopez ; R. Navarro-Gonzalez ; K. Nealson ; A. Nefian ; T. Nelson ; M. Newcombe ; C. Newman ; H. Newsom ; S. Nikiforov ; B. Nixon ; E. Noe Dobrea ; T. Nolan ; D. Oehler ; A. Ollila ; T. Olson ; M. A. de Pablo Hernandez ; A. Paillet ; E. Pallier ; M. Palucis ; T. Parker ; Y. Parot ; K. Patel ; M. Paton ; G. Paulsen ; A. Pavlov ; B. Pavri ; V. Peinado-Gonzalez ; L. Peret ; R. Perez ; G. Perrett ; J. Peterson ; C. Pilorget ; P. Pinet ; J. Pla-Garcia ; I. Plante ; F. Poitrasson ; J. Polkko ; R. Popa ; L. Posiolova ; A. Posner ; I. Pradler ; B. Prats ; V. Prokhorov ; S. W. Purdy ; E. Raaen ; L. Radziemski ; S. Rafkin ; M. Ramos ; E. Rampe ; F. Raulin ; M. Ravine ; G. Reitz ; N. Renno ; M. Rice ; M. Richardson ; F. Robert ; K. Robertson ; J. A. Rodriguez Manfredi ; J. J. Romeral-Planello ; S. Rowland ; D. Rubin ; M. Saccoccio ; A. Salamon ; J. Sandoval ; A. Sanin ; S. A. Sans Fuentes ; L. Saper ; P. Sarrazin ; V. Sautter ; H. Savijarvi ; J. Schieber ; M. Schmidt ; W. Schmidt ; D. Scholes ; M. Schoppers ; S. Schroder ; S. Schwenzer ; E. Sebastian Martinez ; A. Sengstacken ; R. Shterts ; K. Siebach ; T. Siili ; J. Simmonds ; J. B. Sirven ; S. Slavney ; R. Sletten ; M. Smith ; P. Sobron Sanchez ; N. Spanovich ; J. Spray ; S. Squyres ; K. Stack ; F. Stalport ; T. Stein ; N. Stewart ; S. L. Stipp ; K. Stoiber ; E. Stolper ; B. Sucharski ; R. Sullivan ; R. Summons ; D. Sumner ; V. Sun ; K. Supulver ; B. Sutter ; C. Szopa ; F. Tan ; C. Tate ; S. Teinturier ; I. ten Kate ; P. Thomas ; L. Thompson ; R. Tokar ; M. Toplis ; J. Torres Redondo ; M. Trainer ; A. Treiman ; V. Tretyakov ; R. Urqui-O'Callaghan ; J. Van Beek ; T. Van Beek ; S. VanBommel ; D. Vaniman ; A. Varenikov ; A. Vasavada ; P. Vasconcelos ; E. Vicenzi ; A. Vostrukhin ; M. Voytek ; M. Wadhwa ; J. Ward ; E. Weigle ; D. Wellington ; F. Westall ; R. C. Wiens ; M. B. Wilhelm ; A. Williams ; J. Williams ; R. Williams ; R. B. Williams ; M. Wilson ; R. Wimmer-Schweingruber ; M. Wolff ; M. Wong ; J. Wray ; M. Wu ; C. Yana ; A. Yen ; A. Yingst ; C. Zeitlin ; R. Zimdar ; M. P. Zorzano Mier
American Association for the Advancement of Science (AAAS)
Published 2013Staff ViewPublication Date: 2013-07-23Publisher: American Association for the Advancement of Science (AAAS)Print ISSN: 0036-8075Electronic ISSN: 1095-9203Topics: BiologyChemistry and PharmacologyComputer ScienceMedicineNatural Sciences in GeneralPhysicsPublished by: -
3Staff View
Publication Date: 2014-04-18Publisher: Nature Publishing Group (NPG)Print ISSN: 0028-0836Electronic ISSN: 1476-4687Topics: BiologyChemistry and PharmacologyMedicineNatural Sciences in GeneralPhysicsKeywords: Publishing/standards ; Reproducibility of Results ; Research/economics/*standards ; *Research Design ; Research Personnel/standardsPublished by: -
4M. I. Gomez ; C. B. Barrett ; L. E. Buck ; H. De Groote ; S. Ferris ; H. O. Gao ; E. McCullough ; D. D. Miller ; H. Outhred ; A. N. Pell ; T. Reardon ; M. Retnanestri ; R. Ruben ; P. Struebi ; J. Swinnen ; M. A. Touesnard ; K. Weinberger ; J. D. Keatinge ; M. B. Milstein ; R. Y. Yang
American Association for the Advancement of Science (AAAS)
Published 2011Staff ViewPublication Date: 2011-06-04Publisher: American Association for the Advancement of Science (AAAS)Print ISSN: 0036-8075Electronic ISSN: 1095-9203Topics: BiologyChemistry and PharmacologyComputer ScienceMedicineNatural Sciences in GeneralPhysicsKeywords: *Agriculture/economics/standards ; Conservation of Natural Resources ; *Developing Countries/economics ; Food Handling ; *Food Industry/economics/standards ; Food Safety ; *Food Supply/economics/standards ; Marketing ; Policy Making ; Private SectorPublished by: -
5Fernández, Berta ; Jørgensen, Poul ; McCullough, E. A. ; Simons, Jack
College Park, Md. : American Institute of Physics (AIP)
Published 1993Staff ViewISSN: 1089-7690Source: AIP Digital ArchiveTopics: PhysicsChemistry and PharmacologyNotes: Following a systematic examination of basis set and electron correlation effects, accurate hyperfine coupling constants have been determined for the X 3Σ− states of NH and B2 using the multiconfiguration self-consistent-field (MCSCF) restricted–unrestricted (RU) response function approach. These species were chosen for study because their unpaired electrons reside in π orbitals; so at the single configuration self-consistent-field (SCF) approach, they display zero hyperfine coupling constants. The approach advocated here has been tested successfully on σ-radical species with unpaired electrons occupying σ orbitals; this work represents the extension to π-radical species which are expected to be more difficult cases. In designing the atomic orbital basis sets, effects of uncontraction of the orbitals (to permit maximal flexibility especially in describing electron density near nuclei) and of addition of diffuse and tight functions were taken into account. Our final bases give hyperfine coupling constants that agree with numerical Hartree–Fock (HF) and with numerical complete active space valence (CASV) MCSCF results, which indicates that our basis sets are accurate enough to be used in further studies that treat electron correlation more accurately. For dealing with electron correlation in a manner that, based on our past experience, could provide the requisite over all accuracy in the final coupling constants, the CASV configuration spaces were systematically extended to larger CAS (complete active space) spaces using natural orbital occupation numbers to determine which orbitals to include in active spaces for each symmetry. Our final results compare favorably with the available experimental data. The results show that the hyperfine coupling constant for B in B2 and N in NH results from a near cancellation of large and opposite signed core and valence contributions.Type of Medium: Electronic ResourceURL: -
6Feller, David ; Glendening, Eric D. ; McCullough, E. A. ; Miller, R. J.
College Park, Md. : American Institute of Physics (AIP)
Published 1993Staff ViewISSN: 1089-7690Source: AIP Digital ArchiveTopics: PhysicsChemistry and PharmacologyNotes: The magnetic hyperfine structure parameters of NO X 2Π have been determined through a variety of ab initio methods based on restricted and unrestricted Hartree–Fock zeroth order wave functions. Examples of the former include singles configuration interaction (CI), multireference CI, and averaged coupled pair functional theory. Examples of the latter include Møller–Plesset perturbation theory (through fifth order, with estimates to infinite order), coupled cluster methods, and quadratic CI (with approximate inclusion of triple and quadruple excitations). The performance of the various methods in reproducing the difficult-to-describe 14N and 17O isotropic hyperfine interactions is judged in light of both experimental data, where available, and estimated full CI values. The full CI limit was approached through a systematic sequence of ever-more-extensive, selected multireference CI wave functions that would, in principle, include the full CI as its final element. While the isotropic coupling constants were found to converge very slowly along this sequence, at least in comparison to other one-electron properties, the selected CI approach was efficient enough in its recovery of correlation effects to be used with large basis sets. The biggest calculation in the sequence of CI wave functions included over two million configurations. Energies and properties exhibited sufficient regularity to allow fitting with simple functional forms. The error arising from the lack of basis set completeness is estimated by comparison to fully numerical, partial-wave self-consistent field (SCF) and singles CI results. Effects due to vibrational motion are accounted for by numerical integration of the one-dimensional Schrödinger equation.Type of Medium: Electronic ResourceURL: -
7Glendening, Eric D. ; Feller, David ; Peterson, Kirk A. ; McCullough, E. A. ; Miller, R. J.
College Park, Md. : American Institute of Physics (AIP)
Published 1995Staff ViewISSN: 1089-7690Source: AIP Digital ArchiveTopics: PhysicsChemistry and PharmacologyNotes: The dipole moment and magnetic hyperfine properties of the A 2Σ+ Rydberg state of nitric oxide have been evaluated at a variety of levels of theory with extended correlation consistent basis sets. Using the finite field approach to compute the dipole moment, restricted coupled cluster RCCSD(T) and complete active space-configuration interaction CAS-CI+Q methods yield values (1.09–1.12 D) that are essentially identical to experiment. In contrast, dipole moments computed as an expectation value of the dipole moment operator typically differ from experiment by 0.1–0.6 D. The rather unfavorable comparisons with experiment reported in previous theoretical studies may stem, in part, from the method chosen to evaluate the dipole moment. Magnetic hyperfine properties were evaluated using a variety of unrestricted and restricted open-shell Hartree–Fock-based methods. We estimated the full CI limiting properties by exploiting the convergence behavior of a sequence of MRCI wave functions. The isotropic component Aiso(14N) of 39±1 MHz evaluated in this fashion is in excellent accord with the experimental value of 41.4±1.7 MHz. Highly correlated UHF-based methods [e.g., CCSD(T) and QCISD(T)] yield comparable values of 40–41 MHz that are in good agreement with both experiment and the apparent full CI limit. However, for Aiso(17O), the full CI limit (−97±2 MHz) and the UHF-based results (ca.−118 MHz) differ by roughly 20 MHz. It remains unclear how to reconcile this large discrepancy. © 1995 American Institute of Physics.Type of Medium: Electronic ResourceURL: -
8Richman, Kent W. ; McCullough, E. A.
College Park, Md. : American Institute of Physics (AIP)
Published 1987Staff ViewISSN: 1089-7690Source: AIP Digital ArchiveTopics: PhysicsChemistry and PharmacologyNotes: Numerical restricted Hartree–Fock (RHF) calculations on diatomic chromium have been carried out with the partial-wave procedure. The results are compared with the large Slater basis results of McLean and Liu. Most of the residual error in their largest basis is shown to be asymptotic error in the energy of atomic chromium. The true molecular error is small and has little effect on the spectroscopic properties of the molecule at the RHF level.Type of Medium: Electronic ResourceURL: -
9Staff View
ISSN: 0030-4018Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002Topics: PhysicsType of Medium: Electronic ResourceURL: -
10Staff View
ISSN: 1432-2234Keywords: Numerical Hartree-Fock ; Basis set ; MCSCFSource: Springer Online Journal Archives 1860-2000Topics: Chemistry and PharmacologyNotes: Abstract NHF and NMCSCF results for Cu2 are compared with calculations employing basis set expansions. We find that nearly all previous SCF calculations using Gaussian basis sets have underestimated the bond length by about the same amount (0.03 Å) as that attributed to the unlinked cluster and relativistic corrections. The error is shown to be due to deficiencies in the 3d primitive set which yield sizable basis set superposition errors.Type of Medium: Electronic ResourceURL: -
11Staff View
ISSN: 0020-7608Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical PhysicsSource: Wiley InterScience Backfile Collection 1832-2000Topics: Chemistry and PharmacologyNotes: A procedure for generating basis sets for diatomic molecule electronic structure calculations is described. In essence, this procedure maps the results of nearly exact numerical Hartree-Fock calculations into basis set form. Two applications of the procedure are proposed: (a) generation of very high accuracy basis sets, and (b) investigation of basis sets for unusual systems. The latter application is illustrated by some results for diatomic anions.Additional Material: 1 Tab.Type of Medium: Electronic ResourceURL: -
12Staff View
ISSN: 0020-7608Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical PhysicsSource: Wiley InterScience Backfile Collection 1832-2000Topics: Chemistry and PharmacologyNotes: A new procedure for the Fock matrix operator construction is proposed. Its application for RHF calculations on diatomic molecules using Slater orbital basis sets shows that the computation time for the new SCF procedure is proportional to the square of the basis set size.Additional Material: 1 Tab.Type of Medium: Electronic ResourceURL: -
13Adamowicz, Ludwik ; Ellenbogen, James C. ; McCullough, E. A.
New York, NY : Wiley-Blackwell
Published 1986Staff ViewISSN: 0020-7608Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical PhysicsSource: Wiley InterScience Backfile Collection 1832-2000Topics: Chemistry and PharmacologyType of Medium: Electronic ResourceURL: -
14Staff View
ISSN: 1573-1111Keywords: Complexation equilibrium constant ; prediction ; computer simulationSource: Springer Online Journal Archives 1860-2000Topics: Chemistry and PharmacologyNotes: Abstract The complexing properties of macrocyclic ligands have been quantitatively studied by the combined use of molecular mechanics, molecular dynamics, and multiple linear regression. The dependent variables in the regression equations are experimental equilibrium constants for known macrocycle complexes in various solvents. The independent variables are theoretical simulation results on the solvent-free ligand and its complex and additional physically motivated empirical variables to describe solvent and other important effects. The systems studied were: (a) 314 metal ion-macrocycle-solvent (including 3 mixed solvents) combinations; (b) 88 ammonium ion-crown ether-solvent (including 1 mixed solvent) combinations; (c) 24 hydrogen ion-crown ether-H2O combinations; (d) 26 Na+ ion-spherand-CDCl3 combinations; (e) 78 ammonium ion-spherand-CDCl3 combinations; and (f) 73 complicated host-guest-solvent (including 1 mixed solvent) combinations. For each system, we report the best regression equation obtained using the AMBER force field. The standard errors in logK range from 1.42 in the largest system to 0.36 in the smallest. Regression equations were determined for several of the systems using the MMP2 force field as well, and the equations are shown to be relatively insensitive to the force field. The predictive ability of the method was tested by predicting logK for 20% of the cases chosen at random using equations derived from the remaining 80%. The errors in the predicted values are shown to be consistent with the statistical assumptions of the model. Regression equations obtained with this method can be used to predict the equilibrium constants for new complexes involving some combination of new, possibly unknown macrocycle, new host and, in certain cases new solvent. No X-ray or other structural data for the macrocycle is needed.Type of Medium: Electronic ResourceURL: